
SPPARKS Users Manual
Stochastic Parallel PARticle Kinetic Simulator

http://spparks.sandia.gov - Sandia National Laboratories
Copyright (2008) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

Table of Contents
SPPARKS Documentation...1

Version info:..1
1. Introduction...3

1.1 What is SPPARKS..3
1.2 SPPARKS features..4
Pre- and post-processing:..4
1.4 Open source distribution...4
1.4 Acknowledgments and citations...5

2. Getting Started...6
2.1 What's in the SPPARKS distribution..6
2.2 Making SPPARKS..6
2.3 Making SPPARKS with optional packages..10
2.4 Building SPPARKS as a library...10
2.5 Running SPPARKS..11
2.6 Command-line options..12

3. Commands...14
3.1 SPPARKS input script..14
3.2 Parsing rules..15
3.3 Input script structure...15
3.4 Commands listed by category...16
3.5 Individual commands..16

4. How-to discussions..18
4.1 Running multiple simulations from one input script..18
4.2 Coupling SPPARKS to other codes..19

5. Example problems...21
6. Performance & scalability...22
7. Additional tools...23
8. Modifying & extending SPPARKS...24

Application styles..25
Diagnostic styles...25
Input script commands..26
Solve styles...26

9. Errors...27
9.1 Common problems..27
9.2 Reporting bugs..28
9.3 Error & warning messages..28
Errors:...28
Warnings:..38

add_reaction command..39
add_species command...40
app_style chemistry command..41
app_style diffusion command..42
app_style erbium command...45
app_style ising command..47
app_style ising/single command..47
app_style membrane command...49
app_style potts command..51
app_style potts/neigh command..51

SPPARKS Users Manual

i

Table of Contents
app_style potts/neighonly command...51
app_style potts/pin command..53
app_style potts/strain command..55
app_style relax command..57
app_style sos command...58
app_style command...60
app_style test/group command..62
barrier command..64
boundary command...66
clear command...67
count command...68
create_box command...69
create_sites command..70
deposition command..72
diag_style array command...74
diag_style cluster command..75
diag_style diffusion command..77
diag_style energy command..78
diag_style erbium command..79
diag_style propensity command..80
diag_style command..81
dimension command..83
dump command...84
dump image command..84
dump image command..87
dump_modify command..93
dump_one command...100
echo command...101
ecoord command...102
event command..103
if command..105
include command...106
inclusion command..107
jump command..108
label command...109
lattice command...110
log command...112
next command...113
pair_coeff command..115
pair_style lj command...117
pair_style command...119
pin command...120
print command...121
processors command...122
read_sites command..123
region command..126
reset_time command..128
run command...129

SPPARKS Users Manual

ii

Table of Contents
sector command...131
seed command...133
set command..134
shell command...136
app_style command...138
app_style command...139
solve_style command..140
app_style command...142
stats command...143
sweep command..145
temperature command...147
undump command...148
update_only command...149
variable command...150
volume command..154

SPPARKS Users Manual

iii

SPPARKS Documentation

Version info:

The SPPARKS "version" is the date when it was released, such as 1 May 2010. SPPARKS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of SPPARKS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run SPPARKS. It is also in the
file src/version.h and in the SPPARKS directory name created when you unpack a tarball.

If you browse the HTML or PDF doc pages on the SPPARKS WWW site, they always describe the most
current version of SPPARKS.

•

If you browse the HTML or PDF doc pages included in your tarball, they describe the version you have.•

SPPARKS stands for Stochastic Parallel PARticle Kinetic Simulator.

SPPARKS is a kinetic Monte Carlo (KMC) code designed to run efficiently on parallel computers using both
KMC and Metropolis Monte Carlo algorithms. It was developed at Sandia National Laboratories, a US
Department of Energy facility, with funding from the DOE. It is an open-source code, distributed freely under the
terms of the GNU Public License (GPL).

The developers of SPPARKS are Steve Plimpton, Aidan Thompson, and Alex Slepoy. They can be contacted at
sjplimp@sandia.gov, athomps@sandia.gov, and alexander.slepoy@nnsa.doe.gov. The SPPARKS WWW Site at
http://spparks.sandia.gov has more information about the code and its uses.

The SPPARKS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the SPPARKS documentation.

Once you are familiar with SPPARKS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all SPPARKS commands.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations

1.

Getting started
2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command-line options

2.

Commands
3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.

1

http://www.cs.sandia.gov/spparks/bug.html
http://www.cs.sandia.gov/spparks/bug.html
http://www.cs.sandia.gov/~sjplimp
http://spparks.sandia.gov
http://www.easysw.com/htmldoc

How-to discussions4.
Example problems5.
Performance & scalability6.
Additional tools7.
Modifying & Extending SPPARKS8.
Errors
9.1 Common problems
9.2 Reporting bugs
9.3 Error & warning messages

9.

Future plans10.

2

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

1. Introduction

These sections provide an overview of what SPPARKS can do, describe what it means for SPPARKS to be an
open-source code, and acknowledge the funding and people who have contributed to SPPARKS.

1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations

1.1 What is SPPARKS

SPPARKS is a Monte Carlo code that has algorithms for kinetic Monte Carlo (KMC), rejection KMC (rKMC),
and Metropolis Monte Carlo (MMC). On-lattice and off-lattice applications with spatial sites on which "events"
occur can be simulated in parallel.

KMC is also called true KMC or rejection-free KMC. rKMC is also called null-event MC. In a generic sense the
code's KMC and rKMC solvers catalog a list of events, each with an associated probability, choose a single event
to perform, and advance time by the correct amount. Events may be chosen individually at random, or a sweep of
enumarated sites can be performed to select possible events in a more ordered fashion.

Note that rKMC is different from Metropolis MC, which is sometimes called thermodynamic-equilibrium MC or
barrier-free MC, in that rKMC still uses rates to define events, often associated with the rate for the system to
cross some energy barrier. Thus both KMC and rKMC track the dynamic evolution of a system in a time-accurate
manner as events are performed. Metropolis MC is typically used to sample states from a system in equilibrium or
to drive a system to equilibrium (energy minimization). It does this be performing (possibly) non-physical events.
As such it has no requirement to sample events with the correct relative probabilities or to limit itself to physical
events (e.g. it can change an atom to a new species). Because of this it also does not evolve the system in a
time-accurate manner; in general there is no "time" associated with Metropolis MC events.

Applications are implemented in SPPARKS which define events and their probabilities and acceptance/rejection
criteria. They are coupled to solvers or sweepers to perform KMC or rKMC simulations. The KMC or rKMC
options for an application in SPPARKS can be written to define rates based on energy differences between the
initial and final state of an event and a Metropolis-style accept/reject criterion based on the Boltzmann factor
SPPARKS will then perform a Metropolis-style Monte Carlo simulation.

In parallel, a geometric partitioning of the simulation domain is performed. Sub-partitioning of processor domains
into colors or quadrants (2d) and octants (3d) is done to enable multiple events to be performed on multiple
processors simultaneously. Communication of boundary information is performed as needed.

Parallelism can also be invoked to perform multiple runs on a collection of processors, for statistical puposes.

SPPARKS is designed to be easy to modify and extend. For example, new solvers and sweeping rules can be
added, as can new applications. Applications can define new commands which are read from the input script.

SPPARKS is written in C++. It runs on single-processor desktop or laptop machines, but for some applications,
can also run on parallel computers. SPPARKS will run on any parallel machine that compiles C++ and supports
the MPI message-passing library. This includes distributed- or shared-memory machines.

3

http://spparks.sandia.gov
http://www-unix.mcs.anl.gov/mpi

SPPARKS is a freely-available open-source code. See the SPPARKS WWW Site for download information. It is
distributed under the terms of the GNU Public License, which means you can use or modify the code however
you wish. The only restrictions imposed by the GPL are on how you distribute the code further. See this section
for a brief discussion of the open-source philosophy.

1.2 SPPARKS features

These are three kinds of applications in SPPARKS:

on-lattice•
off-lattice•
general•

On-lattice applications define static event sites with a fixed neighbor connectivity. Off-lattice applications define
mobile event sites such as particles. A particle's neighbors are typically specified by a cutoff distance. General
applications have no spatial component.

The set of on-lattice applications currently in SPPARKS are:

diffusion model•
Ising model•
Potts model•
membrane model•

The set of off-lattice applications currently in SPPARKS are:

Metropolis atomic relaxation model•

The set of general applications currently in SPPARKS are:

biochemcial reaction network model•
test driver for solvers using a synthetic biochemical network•

These are the KMC solvers currently available in SPPARKS and their scaling properties:

linear search, O(N)•
tree search, O(logN)•
composition-rejection search, O(1)•

Pre- and post-processing:

Our group has written and released a separate toolkit called Pizza.py which provides tools which can be used to
setup, analyze, plot, and visualize data for SPPARKS simulations. Pizza.py is written in Python and is available
for download from the Pizza.py WWW site.

1.4 Open source distribution

SPPARKS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often referred to as
open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is

4

http://spparks.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

in the LICENSE file that is included in the SPPARKS distribution.

Here is a summary of what the GPL means for SPPARKS users:

(1) Anyone is free to use, modify, or extend SPPARKS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of SPPARKS, it must remain open-source, meaning you distribute source
code under the terms of the GPL. You should clearly annotate such a code as a derivative version of SPPARKS.

(3) If you distribute any code that used SPPARKS source code, including calling it as a library, then that must
also be open-source, meaning you distribute its source code under the terms of the GPL.

(4) If you give SPPARKS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, if you use SPPARKS for something useful or if you fix a bug or add a new
feature or applicaton to the code, let us know. We would like to include your contribution in the released version
of the code and/or advertise your success on our WWW page.

1.4 Acknowledgments and citations

SPPARKS is distributed by Sandia National Laboratories. SPPARKS development has been funded by the US
Department of Energy (DOE), through its LDRD and ASC programs.

The primary authors of SPPARKS are Steve Plimpton, Aidan Thompson, and Alex Slepoy. They can be contacted
via email: sjplimp@sandia.gov, athomps@sandia.gov, alexander.slepoy@nnsa.doe.gov.

The following Sandians have also contributed to the design and ideas in SPPARKS:

Corbett Battaile•
Liz Holm•
Ed Webb•

5

http://www.sandia.gov
http://www.doe.gov
http://www.doe.gov

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

2. Getting Started

This section describes how to unpack, make, and run SPPARKS.

2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command-line options

2.1 What's in the SPPARKS distribution

When you download SPPARKS you will need to unzip and untar the downloaded file with the following
commands, after placing the tarball in an appropriate directory.

gunzip spparks*.tar.gz
tar xvf spparks*.tar

This will create a spparks directory containing two files and several sub-directories:

README text file
LICENSE the GNU General Public License (GPL)
doc documentation
examples test problems
src source files

2.2 Making SPPARKS

This section has the following sub-sections:

Read this first•
Building a SPPARKS executable•
Common errors that can occur when making SPPARKS•
Editing a new low-level Makefile•
Additional build tips•
Building for a Mac•
Building for Windows•

Read this first:

Building SPPARKS can be non-trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, JPEG), etc. Please read this section carefully. If you are not comfortable
with makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a local
expert to help you.

Building a SPPARKS executable:

6

http://spparks.sandia.gov

The src directory contains the C++ source and header files for SPPARKS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for several machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, you can type a command like:

make linux
gmake mac

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will typically build SPPARKS more quickly.

If you get no errors and an executable like spk_linux or spk_mac is produced, you're done; it's your lucky day.

Common errors that can occur when making SPPARKS:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gmake instead of
make. If that doesn't work, try using a -f switch with your make command to use Makefile.list which explicitly
lists all the needed files, e.g.

make makelist
make -f Makefile.list linux
gmake -f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build SPPARKS.

(2) Other errors typically occur because the low-level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE sub-directory. Use whatever existing
file is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low-level Makefile.foo:

These are the issues you need to address when editing a low-level Makefile for your machine. With a couple
exceptions, the only portion of the file you should need to edit is the "System-specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is the
line you will see if you just type "make".

(2) The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems. You
can also use mpicc which will typically be available if MPI is installed on your system, though you should check
which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with Intel CPUs, we
suggest using the commercial Intel icc compiler, which can be downloaded from Intel's compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler can't
create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.foo
patterned after Makefile.storm, which uses different rules that do not involve dependency files.

7

http://www.intel.com/software/products/noncom

(3) The "system-specific settings" section has 3 parts.

(3.a) The SPK_INC variable is used to include options that turn on system-dependent ifdefs within the SPPARKS
code. The settings that are currently recogized are:

-DSPPARKS_GZIP•
-DSPPARKS_JPEG•

The read_sites and dump commands will read/write gzipped files if you compile with -DSPPARKS_GZIP. It
requires that your Unix support the "popen" command.

If you use -DSPPARKS_JPEG, the dump image command will be able to write out JPEG image files. If not, it
will only be able to write out text-based PPM image files. For JPEG files, you must also link SPPARKS with a
JPEG library. See section (3.c) below for more details on this.

(3.b) The 3 MPI variables are used to specify an MPI library to build SPPARKS with.

If you want SPPARKS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc" to build SPPARKS, you can probably leave these 3 variables blank. If
you do not use "mpicc" as your compiler/linker, then you need to specify where the mpi.h file (MPI_INC) and the
MPI library (MPI_PATH) is found and its name (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH 1.2 or 2.0 or OpenMPI. MPICH can be
downloaded from the Argonne MPI site. OpenMPI can be downloaded the OpenMPI site. LAM MPI should also
work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which will be faster than MPICH or OpenMPI or LAM, so find out how to build and
link with it. If you use MPICH or OpenMPI or LAM, you will have to configure and build it for your platform.
The MPI configure script should have compiler options to enable you to use the same compiler you are using for
the SPPARKS build, which can avoid problems that can arise when linking SPPARKS to the MPI library.

If you just want SPPARKS to run on a single processor, you can use the STUBS library in place of MPI, since
you don't need a true MPI library installed on your system. See the Makefile.serial file for how to specify the 3
MPI variables. You will also need to build the STUBS library for your platform before making SPPARKS itself.
From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking to SPPARKS. If this
build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI-standard
function clock() rolls over after an hour or so, and is therefore insufficient for timing long SPPARKS simulations.

(3.c) The 3 JPG variables are used to specify a JPEG library which SPPARKS uses when writing a JPEG file via
the dump image command. These can be left blank if you are not using the -DSPPARKS_JPEG switch discussed
above in section (3.a).

A standard JPEG library usually goes by the name libjpeg.a and has an associated header file jpeglib.h.
Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables in Makefile.foo so that the compiler and linker can find it.

That's it. Once you have a correct Makefile.foo and you have pre-built any other libraries it will use (e.g. MPI,
JPEG), all you need to do from the src directory is type one of these 2 commands:

That's it. Once you have a correct Makefile.foo and you have pre-built the MPI library it uses, all you need to do

8

http://www-unix.mcs.anl.gov/mpi
http://www.open-mpi.org

from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable spk_foo when the build is complete.

Additional build tips:

(1) Building SPPARKS for multiple platforms.

You can make SPPARKS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_name where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean" will delete all *.o object files created when SPPARKS is built.

(3) Changing the size limits in src/spktype.h

If you get an error that refers to size limits set in src/spktype.h then you may need to change one or more settings
in that file and re-compile SPPARKS.

By default the file is setup to allow models to be run with more than 2 billions sites, limited only by available
physical memory on your machine. This requires the use of 64-bit integers for site IDs and tallying system
statistics (e.g. number of accepted events). If your system or MPI implementation does not support 64-bit
integers, or you wish to save memory by using 32-bit integers for these quantities, then you can change the
settings by editing the file. If you use 32-bit integers, then you will be limited to model with around 2 billions
sites.

As the documentation in that file explains, you have basically two choices to make:

set the data type size of integer site IDs to 4 or 8 bytes•
set the data type size of integers that store tallies to 4 or 8 bytes•

Note that in src/spktype.h there are also settings for the MPI data types associated with the site IDs and system
tally sizes, which need to be set consistent with the associated C data types.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
about 2 billion sites per processor (2^31), which should not normally be a restriction since such a problem would
have a huge per-processor memory footprint due to neighbor lists and would run very slowly in terms of CPU
time.

Building for a Mac:

OS X is BSD Unix, so it already works. See the Makefile.mac file.

Building for Windows:

SPPARKS is just C++ with MPI calls, so it should be possible to build it for a Windows box, either using a Linux
installation such as cygwin (see src/MAKE/Makefile.cygwin), or importing the source files into Visual Studio
C++ and building it there. For the latter you are on your own. The SPPARKS developers do not use Windows.

9

But if you figure out how to do it, or create a Visual Studio project that works, please let us know, and we can
release the instructions/files for how to do this as part of SPPARKS.

2.3 Making SPPARKS with optional packages

NOTE: this sub-section is currently a placeholder. There are no packages distributed with the current version of
SPPARKS.

The source code for SPPARKS is structured as a large set of core files which are always used, plus optional
packages, which are groups of files that enable a specific set of features. You can see the list of both standard and
user-contributed packages by typing "make package".

Any or all packages can be included or excluded when SPPARKS is built. You may wish to exclude certain
packages if you will never run certain kinds of simulations.

By default, SPPARKS includes no packages.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package. You can also type "make yes-all" or "make no-all" to include/exclude all packages. These commands
work by simply moving files back and forth between the main src directory and sub-directories with the package
name, so that the files are seen or not seen when SPPARKS is built. After you have included or excluded a
package, you must re-build SPPARKS.

Additional make options exist to help manage SPPARKS files that exist in both the src directory and in package
sub-directories. You do not normally need to use these commands unless you are editing SPPARKS files or have
downloaded a patch from the SPPARKS WWW site. Typing "make package-update" will overwrite src files with
files from the package directories if the package has been included. It should be used after a patch is installed,
since patches only update the master package version of a file. Typing "make package-overwrite" will overwrite
files in the package directories with src files. Typing "make package-check" will list differences between src and
package versions of the same files.

2.4 Building SPPARKS as a library

SPPARKS can be built as a library, which can then be called from another application or a scripting language.
Building SPPARKS as a library is done by typing

make makelib
make -f Makefile.lib foo

where foo is the machine name. The first "make" command will create a current Makefile.lib with all the file
names in your src dir. The 2nd "make" command will use it to build SPPARKS as a library. This requires that
Makefile.foo have a library target (lib) and system-specific settings for ARCHIVE and ARFLAGS. See
Makefile.linux for an example. The build will create the file libspk_foo.a which another application can link to.

When used from a C++ program, the library allows one or more SPPARKS objects to be instantiated. All of
SPPARKS is wrapped in a SPPARKS_NS namespace; you can safely use any of its classes and methods from
within your application code, as needed.

When used from a C or Fortran program or a scripting language, the library has a simple function-style interface,
provided in library.cpp and library.h.

You can add as many functions as you wish to library.cpp and library.h. In a general sense, those functions can

10

access SPPARKS data and return it to the caller or set SPPARKS data values as specified by the caller. These 4
functions are currently included in library.cpp:

void spparks_open(int, char **, MPI_Comm, void **ptr);
void spparks_close(void *ptr);
int spparks_file(void *ptr, char *);
int spparks_command(void *ptr, char *);

The SPPARKS_open() function is used to initialize SPPARKS, passing in a list of strings as if they were
command-line arguments when SPPARKS is run from the command line and a MPI communicator for SPPARKS
to run under. It returns a ptr to the SPPARKS object that is created, and which should be used in subsequent
library calls. Note that SPPARKS_open() can be called multiple times to create multiple SPPARKS objects.

The SPPARKS_close() function is used to shut down SPPARKS and free all its memory. The SPPARKS_file()
and SPPARKS_command() functions are used to pass a file or string to SPPARKS as if it were an input file or
single command read from an input script.

2.5 Running SPPARKS

By default, SPPARKS runs by reading commands from stdin; e.g. spk_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test SPPARKS on any of the sample inputs provided in the examples directory. Input scripts are named
in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of processors it
was run on.

Here is how you might run the Potts model tests on a Linux box, using mpirun to launch a parallel job:

cd src
make linux
cp spk_linux ../examples/lj
cd ../examples/potts
mpirun -np 4 spk_linux <in.potts

The screen output from SPPARKS is described in the next section. As it runs, SPPARKS also writes a log.spparks
file with the same information.

Note that this sequence of commands copies the SPPARKS executable (spk_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch spk_linux on its own and not
under mpirun). If that happens, SPPARKS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If SPPARKS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See this section for a discussion of the various kinds of errors
SPPARKS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

SPPARKS can run a problem on any number of processors, including a single processor. SPPARKS can run as
large a problem as will fit in the physical memory of one or more processors. If you run out of memory, you must
run on more processors or setup a smaller problem.

11

2.6 Command-line options

At run time, SPPARKS recognizes several optional command-line switches which may be used in any order. For
example, spk_ibm might be launched as follows:

mpirun -np 16 spk_ibm -var f tmp.out -log my.log -screen none <in.alloy

These are the command-line options:

-echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

-partition 8x2 4 5 ...

Invoke SPPARKS in multi-partition mode. When SPPARKS is run on P processors and this switch is not used,
SPPARKS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

The input script specifies what simulation is run on which partition; see the variable and next commands. This
howto section gives examples of how to use these commands in this way. Simulations running on different
partitions can also communicate with each other; see the temper command.

-in file

Specify a file to use as an input script. This is an optional switch when running SPPARKS in one-partition mode.
If it is not specified, SPPARKS reads its input script from stdin - e.g. spk_linux < in.run. This is a required switch
when running SPPARKS in multi-partition mode, since multiple processors cannot all read from stdin.

-log file

Specify a log file for SPPARKS to write status information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the file log.spparks. If this switch is used, SPPARKS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.SPPARKS file is created with hi-level status information.
Each partition also writes to a log.SPPARKS.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For
both one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a
log command in the input script will override this setting.

-screen file

Specify a file for SPPARKS to write its screen information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the screen. If this switch is used, SPPARKS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to

12

a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed.

-var name value

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). The value can be any string. Using this command-line option is equivalent to putting the line "variable
name index value" at the beginning of the input script. Defining a variable as a command-line argument overrides
any setting for the same variable in the input script, since variables cannot be re-defined. See the variable
command for more info on defining variables and this section for more info on using variables in input scripts.

13

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

3. Commands

This section describes how a SPPARKS input script is formatted and what commands are used to define a
simulation.

3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 SPPARKS input script

SPPARKS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, SPPARKS exits. Each command causes SPPARKS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:

(1) SPPARKS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

count ligand 10000
run 100
run 100

does something different than this sequence:

run 100
count ligand 10000
run 100

In the first case, the count of ligand molecules is set to 10000 before the first simulation and whatever the count
becomes will be used as input for the second simulation. In the 2nd case, the default count of 0 is used for the 1st
simulation and then the count is set to 10000 molecules before the second simulation.

(2) Some commands are only valid when they follow other commands. For example you cannot set the count of a
molecular species until the add_species command has been used to define that species.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect.

(4) Some commands are only used by a specific application(s).

Many input script errors are detected by SPPARKS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

14

http://spparks.sandia.gov

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. SPPARKS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by SPPARKS:

(1) If the line ends with a "&" character (with no trailing whitespace), the command is assumed to continue on the
next line. The next line is concatenated to the previous line by removing the "&" character and newline. This
allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters which indicate variables that are replaced with a text string. If
the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the character immediately following the $. Thus ${myTemp} and
$x refer to variable names "myTemp" and "x". See the variable command for details of how strings are assigned
to variables and how they are substituted for in input scripts.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the dump
modify or fix print commands for examples. A '#' or '$' character that in text between double quotes will not be
treated as a comment or substituted for as a variable.

3.3 Input script structure

This section describes the structure of a typical SPPARKS input script. The "examples" directory in the
SPPARKS distribution contains sample input scripts; the corresponding problems are discussed in this section,
and some are animated on the SPPARKS WWW Site.

A SPPARKS input script typically has 3 parts:

choice of application, solver, sweeper•
settings•
run a simulation•

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 3 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.

(1) Choice of application, solver, sweep method

Use the app_style, solve_style, and sweep commands to setup the kind of simulation you wish to run. Note that
sweeping is only relevant to applications that define a geometric lattice of event sites and only if you wish to
perform rejection kinetic Monte Carlo updates.

(2) Settings

15

http://spparks.sandia.gov

Parameters for a simulation can be defined by application-specific commands or by generic commands that are
common to many kinds of applications. See the doc pages for individual applications for information on the
former. Examples of the latter are the stats and temperature commands.

The diag_style command can also be used to setup various diagnostic computations to perform during a
simulation.

(3) Run a simulation

A kinetic or Metropolis Monte Carlo simulation is performed using the run command.

3.4 Commands listed by category

This section lists all SPPARKS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some commands are only usable with certain applications. Also, some style options for
some commands are part of specific SPPARKS packages, which means they cannot be used unless the package
was included when SPPARKS was built. Not all packages are included in a default SPPARKS build. These
dependencies are listed as Restrictions in the command's documentation.

Initialization commands:

app_style, create_box, create_sites, processors, read_sites, region, solve_style

Setting commands:

dimension, boundary, lattice, pair_coeff, pair_style, reset_time, sector, seed, sweep, set

Application-specific commands:

add_reaction, add_species, barrier, count, deposition, ecoord, inclusion, pin, temperature, volume

Output commands:

diag_style, dump, dump image, dump_modify, dump_one, stats, undump

Actions:

run,

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all SPPARKS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that some commands are
only usable with certain applications. Also, some style options for some commands are part of specific SPPARKS
packages, which means they cannot be used unless the package was included when SPPARKS was built. Not all
packages are included in a default SPPARKS build. These dependencies are listed as Restrictions in the
command's documentation.

16

add_reaction add_species app_style barrier boundary clear
count create_box create_sites deposition diag_style dimension
dump dump image dump_modify dump_one echo ecoord
event if include inclusion jump label
lattice log next pair_coeff pair_style pin
print processors read_sites region reset_time run
sector seed set shell solve_style stats
sweep temperature undump variable volume

Application styles. See the app_style command for one-line descriptions of each style or click on the style itself
for a full description:

chemistry diffusion erbium ising ising/single membrane potts potts/neigh
potts/neighonly potts/pin relax sos test/group

Solve styles. See the solve_style command for one-line descriptions of each style or click on the style itself for a
full description:

group linear tree

Pair styles. See the pair_style command for one-line descriptions of each style or click on the style itself for a full
description:

lj/cut

Diagnostic styles. See the diag_style command for one-line descriptions of each style or click on the style itself
for a full description:

cluster diffusion erbium energy propensity

17

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

4. How-to discussions

The following sections describe how to perform various operations in SPPARKS.

4.1 Running multiple simulations from one input script
4.2 Coupling SPPARKS to other codes

The example input scripts included in the SPPARKS distribution and highlighted in this section also show how to
setup and run various kinds of problems.

4.1 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

app_style ising/2d/4n 100 100 12345
...
run 1.0
run 1.0
run 1.0
run 1.0
run 1.0

would run 5 successive simulations of the same system for a total of 5.0 seconds of elapsed time.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize SPPARKS. For example, this script

app_style ising/2d/4n 100 100 12345
...
run 1.0
clear
app_style ising/2d/4n 200 200 12345
...
run 1.0

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.runs

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
app_style ising/2d/4n 100 100 12345
include temperature.txt
run 1.0
shell cd ..
clear
next d
jump in.runs

18

http://spparks.sandia.gov

would run 8 simulations in different directories, using a temperature.txt file in each directory with an input
command to set the temperature. The same concept could be used to run the same system at 8 different sizes,
using a size variable and storing the output in different log files, for example

variable a loop 8
variable size index 100 200 400 800 1600 3200 6400 10000
log log.${size}
app_style ising/2d/4n ${size} ${size} 12345
run 1.0
next size
next a
jump in.runs

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running SPPARKS on a single partition of processors. SPPARKS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if SPPARKS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next size" and "next a" commands would need to be replaced with a single "next a size" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.2 Coupling SPPARKS to other codes

SPPARKS is designed to allow it to be coupled to other codes. For example, an atomistic code might relax atom
positions and pass those positions to SPPARKS. Or a continuum finite element (FE) simulation might use a
Monte Carlo relaxation to formulate a boundary condition on FE nodal points, compute a FE solution, and return
the results to the MC calculation.

SPPARKS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new diag_style command that calls the other code. In this scenario, SPPARKS is the driver code.
During its timestepping, the diagnostic is invoked, and can make library calls to the other code, which has been
linked to SPPARKS as a library. See this section of the documentation for info on how to add a new diagnostic to
SPPARKS.

(2) Define a new SPPARKS command that calls the other code. This is conceptually similar to method (1), but in
this case SPPARKS and the other code are on a more equal footing. Note that now the other code is not called
during the even loop of a SPPARKS run, but between runs. The SPPARKS input script can be used to alternate
SPPARKS runs with calls to the other code, invoked via the new command.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with SPPARKS thru files that the
command writes and reads.

See this section of the documentation for how to add a new command to SPPARKS.

(3) Use SPPARKS as a library called by another code. In this case the other code is the driver and calls
SPPARKS as needed. Or a wrapper code could link and call both SPPARKS and another code as libraries.

19

This section of the documentation describes how to build SPPARKS as a library. Once this is done, you can
interface with SPPARKS either via C++, C, or Fortran (or any other language that supports a vanilla C-like
interface, e.g. a scripting language). For example, from C++ you could create one (or more) "instances" of
SPPARKS, pass it an input script to process, or execute individual commands, all by invoking the correct class
methods in SPPARKS. From C or Fortran you can make function calls to do the same things. Library.cpp and
library.h contain such a C interface with the functions:

void spparks_open(int, char **, MPI_Comm, void **);
void spparks_close(void *);
void spparks_file(void *, char *);
char *spparks_command(void *, char *);

The functions contain C++ code you could write in a C++ application that was invoking SPPARKS directly. Note
that SPPARKS classes are defined within a SPPARKS namespace (SPPARKS_NS) if you use them from another
C++ application.

Two of the routines in library.cpp are of particular note. The SPPARKS_open() function initiates SPPARKS and
takes an MPI communicator as an argument. It returns a pointer to a SPPARKS "object". As with C++, the
SPPARKS_open() function can be called multiple times, to create multiple instances of SPPARKS.

SPPARKS will run on the set of processors in the communicator. This means the calling code can run SPPARKS
on all or a subset of processors. For example, a wrapper script might decide to alternate between SPPARKS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
SPPARKS and half to the other code and run both codes simultaneously before syncing them up periodically.

Library.cpp contains a SPPARKS_command() function to which the caller passes a single SPPARKS command
(a string). Thus the calling code can read or generate a series of SPPARKS commands (e.g. an input script) one
line at a time and pass it thru the library interface to setup a problem and then run it.

A few other sample functions are included in library.cpp, but the key idea is that you can write any functions you
wish to define an interface for how your code talks to SPPARKS and add them to library.cpp and library.h. The
routines you add can access any SPPARKS data. The examples/couple directory has example C++ and C codes
which show how a stand-alone code can link SPPARKS as a library, run SPPARKS on a subset of processors,
grab data from SPPARKS, change it, and put it back into SPPARKS.

20

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

5. Example problems

The SPPARKS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are small models that can be run quickly, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. A few sample log file outputs on different machines and different numbers of processors
are included in the directories to compare your answers to. E.g. a log file like log.potts.foo.P means it ran on P
processors of machine "foo".

In some cases, the dump files produced by the example runs can be animated using the various visuzlization tools,
such as the Pizza.py toolkit referenced in the Additional Tools section of the SPPARKS documentation.
Animations of some of these examples can be viewed on the Movies section of the SPPARKS WWW Site.

These are the sample problems in the examples sub-directories:

groups test of group-based KMC solver
ising standard Ising model
membrane membrane model of pore formation around protein inclusions
potts multi-state Potts model for grain growth

Here is how you might run and visualize one of the sample problems:

cd examples/potts
cp ../../src/spk_linux . # copy SPPARKS executable to this dir
spk_linux <in.potts # run the problem

Running the simulation produces the files dump.potts and log.spparks.

21

http://spparks.sandia.gov
http://spparks.sandia.gov

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

6. Performance & scalability

Eventually this section will highlight SPPARKS performance in serial and parallel on interesting Monte Carlo
benchmarks.

22

http://spparks.sandia.gov

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

7. Additional tools

SPPARKS is designed to be a Monte Carlo (MC) kernel for performing kinetic MC or Metropolis MC
computations. Additional pre- and post-processing steps are often necessary to setup and analyze a simulation.
This section describes additional tools that may be useful.

Users can extend SPPARKS by writing diagnostic classes that perform desired analysis or computations. See this
section for more info.

Our group has written and released a separate toolkit called Pizza.py which provides tools which may be useful
for setup, analysis, plotting, and visualization of SPPARKS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

23

http://spparks.sandia.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

8. Modifying & extending SPPARKS

SPPARKS is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to SPPARKS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of SPPARKS.

The best way to add a new feature is to find a similar feature in SPPARKS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of SPPARKS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class. Creating a new
class requires 2 files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain
methods to work as a new option. Depending on how different your new feature is compared to existing features,
you can either derive from the base class itself, or from a derived class that already exists. Enabling SPPARKS to
invoke the new class is as simple as adding two lines to the style_user.h file, in the same syntax as other
SPPARKS classes are specified in the style.h file.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of SPPARKS more complex or cause side-effect
bugs.

Here is a concrete example. Suppose you write 2 files app_foo.cpp and app_foo.h that define a new class AppFoo
that implements a Monte Carlo model described in the classic 1997 paper by Foo, et al. If you wish to invoke that
application in a SPPARKS input script with a command like

app_style foo 0.1 3.5

you put your 2 files in the SPPARKS src directory and re-make the code. The app_foo.h file should have these
lines at the top

#ifdef APP_CLASS
AppStyle(foo,AppFoo)
#else

where "foo" is the style keyword to be used in the app_style command, and AppFoo is the class name in your
C++ files.

When you re-make SPPARKS, your new application becomes part of the executable and can be invoked with a
app_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by your
new class.

Here is a list of the new features that can be added in this way.

Application styles•
Diagnostic styles•
Input script commands•
Solve styles•

24

http://spparks.sandia.gov

As illustrated by the application example, these options are referred to in the SPPARKS documentation as the
"style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of SPPARKS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality SPPARKS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Application styles

In SPPARKS, applications are what define the simulation model that is evolved via Monte Carlo algorithms. A
new model typically requires adding a new application to the code. Read the doc page for the app_style command
to understand the distinction between on-lattice and off-lattice applications. A new off-lattice application can be
anything you wish. On-lattice applications are derive from the AppLattice class.

For on-lattice and off-lattice applications, here is a brief description of methods you define in your new derived
class. Some of them are required; some are optional. See app.h for details.

input_app additional commands the application defines
grow_app set pointers to per-site arrays used by the application
init_app initialize the application before a run
site_energy compute energy of a site
site_event_rejection peform an event with null-bin rejection (for rKMC)
site_propensity compute propensity of all events on a site (for KMC)
site_event perform an event (for KMC)

Note that two of the methods are required if you want your application to perform kinetic Monte Carlo (KMC)
with a solver. One of the methods is required if you want your application to perform rejection KMC (rKMC)
with a sweep method.

The constructor for your application class also needs to define, to insure proper operation with the "KMC
solvers'_solve.html and rejection KMC sweep methods. These are the flags, all of which have default values set in
app_lattice.cpp:

ninteger how many integer values are defined per site
ndouble how many floating point values are defined per site
delpropensity how many neighbors away values are needed to compute propensity
delevent how many neighbors away may the value can be changed by an event
allow_kmc 1 if methods are provided for KMC
allow_rejection 1 if methods are provided for rejection KMC
allow_masking 1 if rKMC method supports masking
numrandom # of random numbers used by the site_event_rejection method

Diagnostic styles

Diagnostic classes compute some form of analysis periodically during a simulation. See the diag_style command
for details.

25

To add a new diagnostic, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

init setup the computation
compute perform the analysis computation
stats_header what to add to statistics header for this diagnostic
stats fields added to statistics by this diagnostic

Input script commands

New commands can be added to SPPARKS input scripts by adding new classes that have a "command" method
and are listed in the Command sections of style_user.h (or style.h). For example, the shell commands (cd, mkdir,
rm, etc) are implemented in this fashion. When such a command is encountered in the SPPARKS input script,
SPPARKS simply creates a class with the corresponding name, invokes the "command" method of the class, and
passes it the arguments from the input script. The command method can perform whatever operations it wishes on
SPPARKS data structures.

The single method your new class must define is as follows:

command operations performed by the new command
Of course, the new class can define other methods and variables as needed.

Solve styles

In SPPARKS, a solver performs the kinetic Monte Carlo (KMC) operation of selecting an event from a list of
events and associated probabilities. See the solve_style command for details.

To add a new KMC solver, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

Here is a brief description of methods you define in your new derived class. All of them are required. See solve.h
for details.

clone make a copy of the solver for use within a sector of the domain
init initialize the solver
update update one or more event probabilities
resize change the number of events in the list
event select an event and associated timestep

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Monte Carlo Applications, 75, 345 (1997).

26

Previous Section - SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands - Next Section

9. Errors

This section describes the various kinds of errors you can encounter when using SPPARKS.

9.1 Common problems
9.2 Reporting bugs
9.3 Error & warning messages

9.1 Common problems

A SPPARKS simulation typically has two stages, setup and run. Many SPPARKS errors are detected at setup
time; others may not occur until the middle of a run.

SPPARKS tries to flag errors and print informative error messages so you can fix the problem. Of course
SPPARKS cannot figure out your physics mistakes, like choosing too big a timestep or setting up an invalid
lattice. If you find errors that SPPARKS doesn't catch that you think it should flag, please send an email to the
developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.spparks file or using the echo command to see it on the screen. For
example you can run your script as

spk_linux -echo screen <in.script

For a given command, SPPARKS expects certain arguments in a specified order. If you mess this up, SPPARKS
will often flag the error, but it may read a bogus argument and assign a value that is not what you wanted. E.g. if
the input parser reads the string "abc" when expecting an integer value, it will assign the value of 0 to a variable.

Generally, SPPARKS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not. If
SPPARKS crashes or hangs without spitting out an error message first then it could be a bug (see this section) or
one of the following cases:

SPPARKS runs in the available memory each processor can allocate. All large memory allocations in the code are
done via C-style malloc's which will generate an error message if you run out of memory. Smaller chunks of
memory are allocated via C++ "new" statements. If you are unlucky you could run out of memory when one of
these small requests is made, in which case the code will crash, since SPPARKS doesn't trap on those errors.

Illegal arithmetic can cause SPPARKS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild energy values or NaN values in your SPPARKS output,
something is wrong with your simulation.

In parallel, one way SPPARKS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

27

http://spparks.sandia.gov

9.2 Reporting bugs

If you are confident that you have found a bug in SPPARKS, please send an email to the developers.

First, check the "New features and bug fixes" section of the SPPARKS WWW site to see if the bug has already
been reported or fixed.

If not, the most useful thing you can do for us is to isolate the problem. Run it on the smallest problem and fewest
number of processors and with the simplest input script that reproduces the bug.

In your email, describe the problem and any ideas you have as to what is causing it or where in the code the
problem might be. We'll request your input script and data files if necessary.

9.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages SPPARKS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Grepping the
source files for the text of the error message and staring at the source code and comments is also not a bad idea!
Note that sometimes the same message can be printed from multiple places in the code.

Errors:

Adding site to bin it is not in
Internal SPPARKS error.

Adding site to illegal bin
Internal SPPARKS error.

All pair coeffs are not set
Self-explanatory.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.

App cannot use both a KMC and rejection KMC solver
You cannot define both a solver and sweep option.

App did not set dt_sweep
Internal SPPARKS error.

App does not permit user_update yes
UNDOCUMENTED

App needs a KMC or rejection KMC solver
You must define either a solver or sweep option.

App relax requires a pair potential
Self-explanatory.

App style proc count is not valid for 1d simulation
There can only be 1 proc in y and z dimensions for 1d models.

App style proc count is not valid for 2d simulation
There can only be 1 proc in the z dimension for 2d models.

App_style command after simulation box is defined
Self-explanatory.

App_style specific command before app_style set
Self-explanatory.

28

http://spparks.sandia.gov

Application cutoff is too big for processor sub-domain
There must be at least 2 bins per processor in each dimension where sectoring occurs.

Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.

BAD DONE
UNDOCUMENTED

BAD STENCIL
UNDOCUMENTED

BIN MISMATCH
UNDOCUMENTED

Bad neighbor site ID
UNDOCUMENTED

Bigint setting in spktype.h is invalid
UNDOCUMENTED

Boundary command after simulation box is defined
UNDOCUMENTED

Boundary command currently only supported by on-lattice apps
UNDOCUMENTED

Box bounds are invalid
Lo bound >= hi bound.

COUNT MISMATCH
UNDOCUMENTED

Can only read Neighbors for on-lattice applications
UNDOCUMENTED

Can only use ecoord command with app_style diffusion nonlinear
Self-explanatory.

Cannot color this combination of lattice and app
Coloring is not supported on this lattice for the neighbor dependencies of this application.

Cannot color without a lattice definition of sites
UNDOCUMENTED

Cannot color without contiguous site IDs
UNDOCUMENTED

Cannot create box after simulation box is defined
Self-explanatory.

Cannot create box with this application style
This application does not support spatial domains.

Cannot create sites after sites already exist
Self-explanatory.

Cannot create sites with undefined lattice
Must use lattice commands first to define a lattice.

Cannot create/grow a vector/array of pointers for %s
UNDOCUMENTED

Cannot define Schwoebel barrier without Schwoebel model
Self-explanatory.

Cannot dump JPG file
UNDOCUMENTED

Cannot open diag style cluster dump file
Self-explanatory.

Cannot open diag_style cluster dump file
Self-explanatory.

29

Cannot open diag_style cluster output file
Self-explanatory.

Cannot open dump file
Self-explanatory.

Cannot open file %s
Self-explanatory.

Cannot open gzipped file
Self-explantory.

Cannot open input script %s
Self-explanatory.

Cannot open log.spparks
Self-explanatory.

Cannot open logfile
Self-explanatory.

Cannot open logfile %s
Self-explanatory.

Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.

Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot perform deposition in parallel
UNDOCUMENTED

Cannot perform deposition with multiple sectors
UNDOCUMENTED

Cannot read Neighbors after sites already exist
UNDOCUMENTED

Cannot read Neighbors unless max neighbors is set
UNDOCUMENTED

Cannot read Sites after sites already exist
UNDOCUMENTED

Cannot read Values before sites exist or are read
UNDOCUMENTED

Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.

Cannot run 1d simulation with nonperiodic Y or Z dimension
UNDOCUMENTED

Cannot run 2d simulation with nonperiodic Z dimension
UNDOCUMENTED

Cannot run application until simulation box is defined
Self-explanatory.

Cannot use %s command until sites exist
This command requires sites exist before using it in an input script.

Cannot use KMC solver in parallel with no sectors
Self-explanatory.

Cannot use color/strict rejection KMC with sectors
Self-explanatory.

Cannot use coloring without domain nx,ny,nz defined

30

UNDOCUMENTED
Cannot use create_sites basis with random lattice

Self-explanatory.
Cannot use diag_style cluster without a lattice defined

This diagnostic uses the lattice style to dump OpenDx files.
Cannot use dump_one for first snapshot in dump file

Self-explanatory.
Cannot use random rejection KMC in parallel with no sectors

Self-explanatory.
Cannot use raster rejection KMC in parallel with no sectors

Self-explanatory.
Cannot use region INF or EDGE when box does not exist

Can only define a region with these parameters after a simulation box has been defined.
Choice of sector stop led to no rKMC events

Self-explanatory.
Color stencil is incommensurate with lattice size

Since coloring induces a pattern of colors, this pattern must fit an integer number of times into a periodic
lattice.

Could not find dump ID in dump_modify command
Self-explanatory.

Could not find dump ID in dump_one command
Self-explanatory.

Could not find dump ID in undump command
Self-explanatory.

Create_box command before app_style set
Self-explanatory.

Create_box region ID does not exist
Self-explanatory.

Create_box region must be of type inside
Self-explanatory.

Create_sites command before app_style set
Self-explanatory.

Create_sites command before simulation box is defined
Self-explanatory.

Create_sites region ID does not exist
Self-explanatory.

Creating a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the create_sites
command for a variable that isn't supported.

Data file dimension does not match existing box
UNDOCUMENTED

Data file maxneigh setting does not match existing sites
UNDOCUMENTED

Data file number of sites does not match existing sites
UNDOCUMENTED

Data file simluation box different that current box
UNDOCUMENTED

Diag cluster does not work if ncluster > 2^31
UNDOCUMENTED

Diag cluster dvalue in neighboring clusters do not match
Internal SPPARKS error.

Diag cluster ivalue in neighboring clusters do not match

31

Internal SPPARKS error.
Diag propensity requires KMC solve be performed

Only KMC solvers compute a propensity for sites and the system.
Diag style cluster dump file name too long

Self-explanatory.
Diag style incompatible with app style

The lattice styles of the diagnostic and the on-lattice application must match.
Diag_style cluster incompatible with lattice style

UNDOCUMENTED
Diag_style cluster nx,ny,nz = 0

UNDOCUMENTED
Diag_style command before app_style set

Self-explanatory.
Diag_style diffusion requires app_style diffusion

Self-explanatory.
Diag_style erbium requires app_style erbium

UNDOCUMENTED
Did not assign all sites correctly

One or more sites in the read_sites file were not assigned to a processor correctly.
Did not create correct number of sites

One or more created sites were not assigned to a processor correctly.
Did not reach event propensity threshhold

UNDOCUMENTED
Dimension command after lattice is defined

Self-explanatory.
Dimension command after simulation box is defined

Self-explanatory.
Divide by 0 in variable formula

Self-explanatory.
Dump command before app_style set

Self-explanatory.
Dump command can only be used for spatial applications

Self-explanatory.
Dump image boundary requires lattice app

UNDOCUMENTED
Dump image crange must be set

UNDOCUMENTED
Dump image drange must be set

UNDOCUMENTED
Dump image persp option is not yet supported

UNDOCUMENTED
Dump image requires one snapshot per file

UNDOCUMENTED
Dump image with quantity application does not support

UNDOCUMENTED
Dump requires propensity but no KMC solve performed

Only KMC solvers compute propensity for sites.
Dump_modify command before app_style set

Self-explanatory.
Dump_modify region ID does not exist

UNDOCUMENTED
Dump_modify scolor requires integer attribute for dump image color

32

UNDOCUMENTED
Dump_modify sdiam requires integer attribute for dump image diameter

UNDOCUMENTED
Dump_one command before app_style set

Self-explanatory.
Dumping a quantity application does not support

The application defines what variables it supports. You cannot output a variable in a dump that isn't
supported.

Failed to allocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to reallocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

GHOST IN OWNED BIN
UNDOCUMENTED

Ghost connection was not found
Internal SPPARKS error. Should not occur.

Ghost site was not found
Internal SPPARKS error. Should not occur.

Illegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running SPPARKS to see the offending line.

Incorrect args for pair coefficients
Self-explanatory.

Incorrect lattice neighbor count
Internal SPPARKS error.

Incorrect site format in data file
Self-explanatory.

Incorrect value format in data file
Self-explanatory.

Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.

Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.

Invalid attribute in dump text command
UNDOCUMENTED

Invalid color in dump_modify command
UNDOCUMENTED

Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch SPPARKS.

Invalid diag_style command
UNDOCUMENTED

Invalid dump image filename
UNDOCUMENTED

Invalid dump image persp value
UNDOCUMENTED

Invalid dump image theta value
UNDOCUMENTED

Invalid dump image zoom value
UNDOCUMENTED

33

Invalid dump style
UNDOCUMENTED

Invalid dump_modify threshold operator
Self-explanatory.

Invalid event count for app_style test/group
Number of events must be > 0.

Invalid image color range
UNDOCUMENTED

Invalid image up vector
UNDOCUMENTED

Invalid keyword in dump command
Self-explanatory.

Invalid keyword in variable formula
UNDOCUMENTED

Invalid math function in variable formula
The math function is not recognized.

Invalid number of sectors
Self-explanatory.

Invalid pair style
Self-explanatory.

Invalid probability bounds for app_style test/group
Self-explanatory.

Invalid probability bounds for solve_style group
Self-explanatory.

Invalid probability delta for app_style test/group
Self-explanatory.

Invalid region style
Self-explanatory.

Invalid site ID in Sites section of data file
Self-explanatory.

Invalid syntax in variable formula
Self-explanatory.

Invalid value setting in diag_style erbium
UNDOCUMENTED

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self-explanatory.

Invalid variable name
Variable name used in an input script line is invalid.

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Invalid volume setting
Volume must be set to value > 0.

KMC events are not implemented in app
Not every application supports KMC solvers.

LINK MISMATCH
UNDOCUMENTED

Label wasn't found in input script
Self-explanatory.

34

Lattice command before app_style set
Self-explanatory.

Lattice style does not match dimension
Self-explanatory.

Log of zero/negative in variable formula
Self-explanatory.

MPI_SPK_BIGINT and bigint in spktype.h are not compatible
UNDOCUMENTED

MPI_SPK_TAGINT and tagint in spktype.h are not compatible
UNDOCUMENTED

Mask logic not implemented in app
Not every application supports masking.

Mismatch in counting for dbufclust
Self-explanatory.

Must read Sites before Neighbors
Self-explanatory.

Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.

Must use value option before basis option in create_sites command
Self-explanatory.

No Neighbors defined in site file
UNDOCUMENTED

No Sites defined in site file
UNDOCUMENTED

No reactions defined for chemistry app
Use the add_reaction command to specify one or more reactions.

No solver class defined
Self-explanatory.

Off-lattice application data file cannot have maxneigh setting
UNDOCUMENTED

One or more Hamiltonian params are unset
UNDOCUMENTED

One or more sites have invalid values
The application only allows sites to be initialized with specific values.

PBC remap of site failed
Internal SPPARKS error.

Pair_coeff command before app_style set
Self-explanatory.

Pair_coeff command before pair_style is defined
Self-explanatory.

Pair_style command before app_style set
Self-explanatory.

Per-processor solve tree is too big
UNDOCUMENTED

Per-processor system is too big
UNDOCUMENTED

Periodic box is not a multiple of lattice spacing
UNDOCUMENTED

Power by 0 in variable formula
Self-explanatory.

Processor partitions are inconsistent

35

The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Processors command after simulation box is defined
Self-explanatory.

Random lattice has no connectivity
The cutoff distance is likely too short.

Reaction ID %s already exists
Cannot re-define a reaction.

Reaction cannot have more than MAX_PRODUCT products
Self-explanatory.

Reaction has no numeric rate
Self-explanatory.

Reaction must have 0,1,2 reactants
Self-explanatory.

Read_sites command before app_style set
Self-explanatory.

Region ID for dump text does not exist
UNDOCUMENTED

Region command before app_style set
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union region ID does not exist
Self-explanatory.

Rejection events are not implemented in app
Self-explanatory.

Reset_time command before app_style set
Self-explanatory.

Reuse of dump ID
UNDOCUMENTED

Reuse of region ID
Self-explanatory.

Run command before app_style set
Self-explanatory.

Run upto value is before current time
Self-explanatory.

SITE MISMATCH
UNDOCUMENTED

SITES NOT IN BINS
UNDOCUMENTED

Seed command has not been used
The seed command must be used if another command requires random numbers.

Set command before sites exist
Self-explanatory.

Set command region ID does not exist
Self-explanatory.

Set if test on quantity application does not support
The application defines what variables it supports. You cannot do an if test with the set command on a
variable that isn't supported.

Setting a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the set command on a
variable that isn't supported.

36

Site file has no Sites, Neighbors, or Values
UNDOCUMENTED

Site not in my bin domain
Internal SPPARKS error.

Site-site interaction was not found
Internal SPPARKS error.

Smallint setting in spktype.h is invalid
UNDOCUMENTED

Solve_style command before app_style set
Self-explanatory.

Species ID %s already exists
Self-explanatory.

Species ID %s does not exist
Self-explanatory.

Sqrt of negative in variable formula
Self-explanatory.

Stats command before app_style set
Self-explanatory.

Substitution for illegal variable
Self-explanatory.

System in site file is too big
UNDOCUMENTED

Tagint setting in spktype.h is invalid
UNDOCUMENTED

Temperature cannot be 0.0 for app erbium
UNDOCUMENTED

Threshold for a quantity application does not support
The application defines what variables it supports. You cannot do a threshold test with the dump
command on a variable that isn't supported.

Too many neighbors per site
Internal SPPARKS error.

Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.

Undump command before app_style set
Self-explanatory.

Unexpected end of data file
Self-explanatory.

Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to SPPARKS. Check the input script.

Unknown identifier in data file: %s
Self-explanatory.

Unknown species in reaction command
Self-explanatory.

Unrecognized command
The command is assumed to be application specific, but is not known to SPPARKS. Check the input
script.

Use of region with undefined lattice
The lattice command must be used before defining a geometric region.

Variable for dump image center is invalid style

37

UNDOCUMENTED
Variable for dump image persp is invalid style

UNDOCUMENTED
Variable for dump image phi is invalid style

UNDOCUMENTED
Variable for dump image theta is invalid style

UNDOCUMENTED
Variable for dump image zoom is invalid style

UNDOCUMENTED
Variable name for dump image center does not exist

UNDOCUMENTED
Variable name for dump image persp does not exist

UNDOCUMENTED
Variable name for dump image phi does not exist

UNDOCUMENTED
Variable name for dump image theta does not exist

UNDOCUMENTED
Variable name for dump image zoom does not exist

UNDOCUMENTED
Variable name must be alphanumeric or underscore characters

Self-explanatory.
World variable count doesn't match # of partitions

A world-style variable must specify a number of values equal to the number of processor partitions.

Warnings:

%d propensities were reset to hi value, max hi = %g
UNDOCUMENTED

%d propensities were reset to lo value, max lo = %g
UNDOCUMENTED

Using dump image boundary with spheres
UNDOCUMENTED

38

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

add_reaction command

Syntax:

add_reaction reactant1 reactant2 rate product1 product2 ...

reactant1,reactant2 = 0, 1, or 2 reactant species•
rate = reaction rate (see units below)•
product1, product2 = 0, 1, or more product species•

Examples:

add_reaction A B 1.0e10 C
add_reaction 1.0 d
add_reaction b2 1.0e-10 c3 d4 e3

Description:

This command defines a chemical reaction for use in the app_style chemistry application.

Each reaction has 0, 1, or 2 reactants. It also has 0, 1, or more products. The reactants and products are specified
by species ID strings, as defined by the add_species command.

The units of the specified rate constant depend on how many reactants participate in the reaction:

0 reactants = rate is molarity/sec•
1 reactant = rate is 1/sec•
2 reactants = rate is 1/molarity-sec•

Thus the first reaction listed above represents an A and B molecule binding to form a complex C at a rate of
1.0e10 per molarity per second. I.e. A + B -> C.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_species

Default: none

39

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

add_species command

Syntax:

add_species name1 name2 ...

name1,name2 = ID strings for different species•

Examples:

add_species kinase
add_species NFkB kinase2 NFkB-IKK

Description:

This command defines the names of one or more chemical species for use in the app_style chemistry application.

Each ID string can be any sequence of non-whitespace characters (alphanumeric, dash, underscore, etc).

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_reaction, count

Default: none

40

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style chemistry command

Syntax:

app_style chemistry

chemistry = application style name•

Examples:

app_style chemistry

Description:

This is a general application which evolves a set of coupled chemical reactions stochastically, producing a time
trace of species concentrations. Chemical species are treated as counts of individual molecules reacting within a
reaction volume in a well-mixed fashion. Individual reactions are chosen via the direct method variant of the
Stochastic Simulation Algorithm (SSA) of (Gillespie).

A prototypical example is to use this model to simulate the execution of a protein signaling network in a
biological cell.

This application can only be evolved using a kinetic Monte Carlo (KMC) algorithm. You must thus define a KMC
solver to be used with the application via the solve_style command

The following additional commands are defined by this application:

add_reaction define a chemical reaction
add_species define a chemical species
count specify molecular count of a species
volume specify volume of the chemical reactor

Restrictions: none

Related commands: none

Default: none

(Gillepsie) Gillespie, J Chem Phys, 22, 403-434 (1976); Gillespie, J Phys Chem, 81, 2340-2361 (1977).

41

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style diffusion command

Syntax:

app_style diffusion estyle dstyle args

diffusion = application style name•
estyle = off or linear or nonlinear•
dstyle = hop or schwoebel

hop args = none
schwoebel args = Nmax Nmin

 Nmax = max # of neighbors the initial Schwoebel site can have
 Nmin = min # of neighbors the final Schwoebel site can have

•

Examples:

app_style diffusion linear hop
app_style diffusion nonlinear schwoebel 5 2

Description:

This is an on-lattice application which performs diffusive hops on a lattice whose sites are partially occupied and
partially unoccupied (vacancies). It can be used to model surface diffusion or bulk diffusion on 2d or 3d lattices. It
is equivalent to a 2-state Ising model performing Kawasaki dynamics where neighboring sites exchange their
spins as the model evolves. Each lattice site stores a value which is 1 for vacant or 2 for occupied or 3 for vacant
and a non-deposition site. See the deposition command for more details on the value = 3 sites.

The estyle setting determines how energy is used in computing the probability of hop events, which is related to
the Hamiltonian for the system.

The Hamiltonian representing the energy of an occupied site I for the off style is 0, which simply means energy is
not used in determining the hop probabilities. Instead, see the barrier command.

The Hamiltonian representing the energy of an occupied site I for the linear style is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if site J is occupied and 1 if site J is
vacant. The Hi for a vacant site is 0.

The Hamiltonian representing the energy of an occupied site I for the nonlinear style is as follows:

Hi = Eng(Sum_j delta_ij)

where Sum_j is the sum over all its neighbor sites and delta_ij now 1 if site J is occupied and 0 otherwise. Thus
the summation computes the coordination number of site I. Note that this definition of delta is the opposite of how
it is defined for estyle linear. The function Eng() is a tabulated function with values specified via the ecoord
command. This effectively allows the energy to be a non-linear function of coordination number. As before the Hi
for a vacant site is 0.

For all these estyle settings, the energy of the entire system is the sum of Hi over all sites.

42

http://spparks.sandia.gov

The dstyle setting determines what kind of diffusive hops are modeled. For hop, only simple nearest-neighbor
hops occur where an atom hops to a neighboring vacant site. For schwoebel, Schwoebel hops can also occur,
which are defined in the following way. An atom I can hop to a 2nd neighbor vacant site K if there are two
intermediate 1st neighbor sites J1 and J2, where J1 is vacant and J2 is occupied, and J1 and J2 are neighbors of
each other. Additionaly the initial site I can have no more the Nmax occupied neighbors (its coordination
number), and the destination site K can have no fewer than Nmin neighbors.

The deposition command can be used with this application to add atoms to the system in competition with hop
events.

IMPORTANT NOTE: If you have a free surface you are depositing onto, it may also be possible for atoms to
diffuse away from this surface, i.e. desorb into a vacuum. This application does not do anything special with those
atoms (e.g. remove them), so they may clump together or induce deposition to take place onto the clumps above
the surface. If you wish to prevent this you should insure that desorption is an energetically unfavorable event.

The barrier command can be used with this application to add an energy barrier to the model for nearest-neighbor
hop and Schwoebel hop events, as discussed below.

The ecoord command can be used with the nonlinear version of this application to set tabulated values for the
Hamiltonian Eng() function as described above.

Note that estyle nonlinear should give the same answer as estyle linear if the tabulated function specified by the
ecoord command is specified as E_0 = N, E_1 = N-1, ... E_N-1 = 1, E_N = 0, where N = the number of neighbors
of each lattice site, i.e. the maximum coordination number. In this scenario, the energy is effectively a linear
function of coordination number.

This application performs Kawasaki dynamics, in that the "spins" on two neighboring sites are swapped, where
spin can be thought of as a flag representing occupied or vacant. Equivalently, an atom hops from an occupied site
to a vacancy site.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands. The linear estyle supports both KMC and rKMC options. The other
estyles only support KMC options. If the deposition command is used, then only KMC options are supported.

For solution by a KMC algorithm, the possible events an occupied site can perform are swaps with vacant
neighbor sites. The probability of each such event depends on several variables: the estyle setting, whether the
barrier command is used, whether the hop is downhill or uphill in energy, and whether the temperature is 0.0 or
finite. The following table gives the hop probability for each possible combination of these variables.

Energy Barrier Direction Temperature Probability
no no N/A either 1
no yes N/A 0.0 0
no yes N/A finite exp(-Q/kT)
yes no down either 1
yes no up 0.0 0
yes no up finite exp(-dE/kT)
yes yes down 0.0 0
yes yes down finite exp(-Q/kT)
yes yes up 0.0 0

43

yes yes up finite exp((-dE-Q)/kT)
If estyle is set to off, then energy is "no" in the table. Any other estyle setting is energy = "yes". Barrier is "no" in
the table if the "barrier" command is not used, else it is "yes" in the table. The direction of energy change
(downhill versus uphill) is only relevant if energy is "yes", else it is N/A. The "either" entry for temperature
means 0.0 or finite.

The value dE = Efinal - Einitial refers to the energy change in the system due to the hop. For estyle linear this can
be computed from just the sites I,J. For estyle nonlinear the energy of the neighbors of both sites I,J must also be
computed.

For solution by a Metropolis algorithm, the hop event is performed or not if the probability in the table is 1 or 0.
For intermediate values, a uniform random number R between 0 and 1 is generated and the hop event is accepted
if R < probability in the table.

The following additional commands are defined by this application. The ecoord command can only be used with
the nonlinear energy style.

barrier define energy barriers for hop events
deposition define deposition events
ecoord specify site energy as a function of coordination number
temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style ising

Default: none

44

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style erbium command

Syntax:

app_style erbium

erbium = style name of this application•

Examples:

app_style erbium

Description:

This application simulates a model of reaction and diffusion on a specialized Erbium lattice, which consists of an
fcc lattice for the Erbium and additional tetrahedral and octahedral interstitial sites.

This application stores 2 integers per lattice site. The first integer (i1) is the "type" of the site:

type = 1 = fcc•
type = 2 = octahedral•
type = 3 = tetrahedral•

The second integer (i2) is the element on the site:

element = 1 = erbium•
element = 2 = hydrogen•
element = 3 = helium•
element = 4 = vacancy•

The 3-fold lattice should be created using the lattice fcc/octa/tetra command, which gives details of its geometry
and neighbor connectivity.

The 3-fold lattice should normally be initialized in the following way, using the set command. All fcc sites are for
erbium atoms and are fully occupied. All octahedral sites are initially vacant. A fraction of the tetrahedral sites is
initialized with hydrogen atoms; the remainder are vacant.

The event command is used to define what kinds of diffusive hops and reaction events occur in the model. These
can include correlated hops where a central site coordinates a change at two of its neighbor sites. Reaction events
that transmute a Hydrogen atom to a Helium are also possible.

As explained on this page, this application can be evolved only by a kinetic Monte Carlo (KMC). You must thus
define a KMC solver to be used with the application via the solve_style command.

For solution by a KMC algorithm, the list of events that can occur at each site is determined by its current
neighbors and by the events specified via the event command. The relative probability of each event occurring is
computed as a function of the rate or energy value specified in the event command and the temperature specified
via the temperature command. The details are explained in the doc page for the event command.

The following additional commands are defined by this application.

45

http://spparks.sandia.gov

event definition of an event on the 3-fold lattice
temperature set Monte Carlo temperature

Restrictions: none

Related commands:

diag_style erbium

Default: none

46

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style ising command

app_style ising/single command

Syntax:

app_style style

style = ising or ising/single•

Examples:

app_style ising
app_style ising/single

Description:

These are on-lattice applications which evolve a 2-state Ising model, where each lattice site has a spin of 1 or 2.
Sites flip their spin as the model evolves.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

This application performs Glauber dynamics, meaning the spin is flipped on a single site. See app_style diffusion
for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(-dE/kT)], where dE =
Efinal - Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly).

For solution by a rKMC algorithm, the ising and ising/single styles use a different rejection-based algorithm. For
the ising style, the spin is set randomly to 1 or 2. For the ising/single style, the spin is flipped to its opposite value.
In either case, dE = Efinal - Einitial is calculated, as is a uniform random number R between 0 and 1. The new
state is accepted if R < min[1,exp(-dE/kT)].

The following additional commands are defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

47

http://spparks.sandia.gov

app_style potts

Default: none

48

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style membrane command

Syntax:

app_style membrane w01 w11 mu

membrane = style name of this application•
w01 = sovent-protein interaction energy (typically 1.25)•
w11 = sovent-solvent interaction energy (typically 1.0)•
mu = chemical potential to insert a solvent (typically -2.0)•

Examples:

app_style membrane 1.25 1.0 -3.0

Description:

This is an on-lattice application which evolves a membrane model, where each lattice site is in one of 3 states:
lipid, water, or protein. Sites flip their state as the model evolves. See the paper of (Sarkisov) for a description of
the model and its applications to porous media. Here it is used to model the state of a lipid membrane around
embedded proteins, such as one enclosing a biological cell.

In the model, protein sites are defined by the inclusion command and never change. The remaining sites are
initially lipid and can flip between solvent and lipid as the model evolves. Typically, water will coat the surface of
the proteins and create a pore in between multiple proteins if they are close enough together.

The Hamiltonian represeting the energy of site I is as follows:

H = - mu x_i - Sum_j (w11 a_ij + w01 b_ij)

where Sum_j is a sum over all the neighbor sites of site I, x_i = 1 if site I is solvent and 0 otherwise, a_ij = 1 if
both the I,J sites are solvent and 0 otherwise, b_ij = 1 if one of the I,J sites is solvent and the other is protein and 0
otherwise. Mu and w11 and w01 are user inputs. As discussed in the paper, this is essentially a lattice gas
grand-canonical Monte Carlo model, which is isomorphic to an Ising model. The mu term is a penalty for
inserting solvent which prevents the system from becoming all solvent, which the 2nd term would prefer.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip from a lipid to fluid state or vice versa. The
probability of the event is min[1,exp(-dE/kT)], where dE = Efinal - Einitial using the Hamiltonian defined above
for the energy of the site, and T is the temperature of the system defined by the temperature command (which
includes the Boltzmann constant k implicitly).

For solution by a Metropolis algorithm, the site is set randomly to fluid or lipid, unless it is a protein site in which
case it is skipped altogether. The energy change dE = Efinal - Einitial is calculated, as is a uniform random
number R between 0 and 1. The new state is accepted if R < min[1,exp(-dE/kT)], else it is rejected.

The following additional commands are defined by these applications:

49

http://spparks.sandia.gov

inclusion specify which sites are proteins
temperature set Monte Carlo temperature

Restrictions: none

Related commands: none

Default: none

(Sarkisov) Sarkisov and Monson, Phys Rev E, 65, 011202 (2001).

50

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style potts command

app_style potts/neigh command

app_style potts/neighonly command

Syntax:

app_style style Q

style = potts or potts/neigh or potts/neighonly•
Q = number of spin states•

Examples:

app_style potts 100
app_style potts/neigh 20

Description:

These are on-lattice applications which evolve a Q-state Ising model or Potts model, where each lattice site has a
spin value from 1 to Q. Sites flip their spin as the model evolves.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

These applications perform Glauber dynamics, meaning the spin is flipped on a single site. See app_style
diffusion for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are
swapped.

As explained on this page, these applications can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(-dE/kT)], where dE =
Efinal - Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly). The KMC
algorithm does not allow spin flips known as "wild" flips, even at finite temperature. These are flips to values that
are not equal to any neighbor site value.

For solution by a rKMC algorithm, the various styles use different rejection-based algorithms. For the potts style,
a random spin from 1 to Q is chosen. For the potts/neigh style, a spin is chosen randomly from the values held by
neighbor sites and a null-bin of a size which extends the possible events up to the maximum number of neighbors.
For example, imagine a site has 12 neighbors and the 12 sites have 4 different spin values. Then each of the 4
neighbor spin values will be chosen with 1/12 probability and the null bin will be chosen with 8/12 probability.
For the potts/neighonly style, the null bin is discarded, so in this case each of the 4 spin values will be chosen with

51

http://spparks.sandia.gov

1/4 probability. In all the cases, dE = Efinal - Einitial is calculated, as is a uniform random number R between 0
and 1. The new state is accepted if R < min[1,exp(-dE/kT)], else it is rejected.

The rKMC algorithm for the potts style does allow spin flips known as "wild" flips. These are flips to values that
are not equal to any neighbor site value. At temperature 0.0 these are effectively disallowed, since they will
increase the energy of the system (except in the uninteresting case when the site already has a spin value not equal
to any neighbor values), but at finite temperature they will have a non-zero probability of occurring.

The following additional commands are defined by these applications:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style ising

Default: none

52

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style potts/pin command

Syntax:

app_style potts/pin Q

potts/pin = application style name•
Q = number of spin states•

Examples:

app_style potts/pin 100

Description:

This is an on-lattice application which evolves a Q-state Potts model in the presence of pinning sites, which are
sites tagged with a spin value of Q+1 which do not change. Their effect is typically to pin or inhibit grain growth
in various ways.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

This application performs Glauber dynamics, meaning the spin is flipped on a single site. See app_style diffusion
for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(-dE/kT)], where dE =
Efinal - Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly). The KMC
algorithm does not allow spin flips known as "wild" flips, even at finite temperaturge. These are flips to values
that are not equal to any neighbor site value. The KMC algorithm also does not allow spin flips to a pinned site
value.

For solution by a rKMC algorithm, a random spin from 1 to Q is chosen. Note that this does not allow a spin flip
to a pinned site value, since those sites are set to Q+1. When the flip is attempted dE = Efinal - Einitial is
calculated, as is a uniform random number R between 0 and 1. The new state is accepted if R <
min[1,exp(-dE/kT)], else it is rejected.

The following additional commands are defined by this application:

pin create a set of pinned sites
temperature set Monte Carlo temperature

53

http://spparks.sandia.gov

Restrictions: none

Related commands:

app_style potts

Default: none

54

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style potts/strain command

Syntax:

app_style potts/strain Q

potts/strain = application style name•
Q = number of spin states•

Examples:

app_style potts/strain 100

Description:

This is an on-lattice application which evolve a Q-state Potts model with a per-site strain, where each lattice site
has a spin value from 1 to Q. Sites flip their spin as the model evolves. The strain energy can influence the grain
growth.

The Hamiltonian representing the energy of site I is the same as for the Potts model:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

The per-site strain influences spin flips through altering the effective temperature as discussed below.

This applications perform Glauber dynamics, meaning the spin is flipped on a single site. See app_style diffusion
for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.

As explained on this page, this application is evolved by a kinetic Monte Carlo (KMC) algorithm. You must thus
define a KMC solver to be used with the application via the solve_style command.

For solution by a KMC algorithm, a site event is a spin flip and its probability is 1/(1+strain) when dE <= 0 and
exp(-dE/kT*) when dE > 0 and the temperature T is finite, where dE = Efinal - Einitial using the Hamiltonian
defined above for the energy of the site, T is the temperature of the system defined by the temperature command
(which includes the Boltzmann constant k implicitly), and T* = T (1 + strain). Thus the effect of the strain,
defined for each site, is to rescale the temperature.

The KMC algorithm does not allow spin flips known as "wild" flips, even at finite temperature. These are flips to
values that are not equal to any neighbor site value.

Strain values are stored for each site as a "double" value. This means they can be assigned to each site using the
"d1" keyword with the set command, or read in via the read_sites command.

The application does not change the strain assigned to each site as the simulation progresses. But if SPPARKS is
built and used as a library, as discussed in this section of the manual, the driver program can alter the per-site
settings. The "couple" directory of the LAMMPS molecular dynamics package includes a sample coupled
LAMMPS/SPPARKS application which uses LAMMPS to compute strain values at each site of a snapshot of

55

http://spparks.sandia.gov
http://lammps.sandia.gov

grain structure produced by this application running in SPPARKS. The strains are passed back to SPPARKS
periodically by the driver application so that more Monte Carlo dynamics can be performed.

The following additional command is defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style potts

Default: none

56

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style relax command

Syntax:

app_style relax delta

relax = style name of this application•
delta = maximum displacement distance of a particle (distance units)•

Examples:

app_style relax 0.5

Description:

This is an off-lattice application which treats sites as particles which interact through a pair potential and whose
collective energy is relaxed via Metropolis Monte Carlo translational moves.

The energy of a particle I is as follows:

Ei = Sum_j phi(Rij)

where Sum_j is a sum over all the neighbor of pariticle I within some cutoff distance, phi() is the potential energy
function defined by the pair_style command, and Rij is the distance between particles I and J. The energy of the
entire system is the sum of Ei over all particles. The pair_style command also defines the cutoff distance.

As explained on this page, this application is evolved by a Metroplis Monte Carlo (MMC) algorithm. You must
thus define a sweeping method to be used with the application via the sweep command.

For solution by the MMC algorithm, once a particle is chosen, a translational move of the particle is made, by
choosing a random location within a sphere of radius delta surrounding the particle. The energy of the particle
before and after the move is calculated, to give dE = Efinal - Einitial. The move is accepted if R <
min[1,exp(-dE/kT)], else it is rejected, where R is a uniform random number R between 0 and 1.

The following additional commands are defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

Default: none

57

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style sos command

Syntax:

app_style sos bond_energy keyword args

sos = application style name•
bond_energy = lateral bond energy between columns•
zero or more keyword/value pairs may be appended•
keyword = xsin

xsin args = amp Lx Lz
 amp = amplitude of initial sine wave
 Lx = wavelength of initial sine wave in x direction
 Lz = wavelength pf initial sine wave in z direction (ignored if > 1.0e10)

•

Examples:

app_style sos 1.0 xsin 5.5 20.0 1.0e+20
app_style sos 2.0 none

Description:

The SOS (Solid-on-Solid) model is an on-lattice application that models a solid surface as a 1D or 2D lattice of
sites. At each site an integer value represents the height of the surface at that site, so that collectively the heights
of all the sites represent a surface profile with no overhangs or vacancies.

The Hamiltonian representing the energy of a site I is:

Hi = 1/2 J Sum_j |h_i - h_j|

where J is the bond energy, specified through the bond_energy parameter, and h_i and h_j are the heights at sites I
and J. Sum_j represents a sum over the nearest neighbors of i, e.g. the neighbors to the immediate left and right
for a 1D lattice.

If the xsin keyword is used, an initial height profile is assigned by a sine function. If the z dependence is inactive
(Lz > 1.0e10), this is

hi = round(amp*sin(2*pi*x/Lx))

If the z dependence is active, this is instead:

hi = round(amp * min(sin(2*pi*x/Lx), sin(2*pi*z/Lz)))

This application performs Kawasaki dynamics, in which each event involves an "atom" hopping from one site to a
neighboring site. That is, an event consists of site I losing one unit of height, and either site I+1 or I-1
simultaneously gaining one unit of height.

This application does not allow for use of a rejection KMC (rKMC) algorithm; only KMC options are supported.
See this page for more information. For solution by a KMC algorithm, the probability of each "atom hop" event is
min[P0, P0*exp(-dE/kT)], where P0 is a scaling factor, dE = Efinal - Einitial using the Hamiltonian defined above
for the energy of the site, and T is the temperature of the system defined by the temperature command (which

58

http://spparks.sandia.gov

includes the Boltzmann constant k implicitly). The scaling factor P0 is given by 1/nn where nn is the number of
nearest neighbors for each site.

The following additional commands are defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style diffusion

59

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style command

Syntax:

app_style style args

style = one of a list of possible style names (see below)•
args = arguments specific to an application, see application doc page for details•

Examples:

app_style diffusion ...
app_style ising ...
app_style potts ...
app_style relax ...
app_style chemistry ...
app_style test/group ...

Description:

This command defines what model or application SPPARKS will run. There are 3 kinds of applications:
on-lattice, off-lattice, and general.

On-lattice applications define a set of static sites in space on which events occur. The sites can represent a
crystalline lattice, or be more disordered. The key point is that they are immobile and that each site's
neighborhood of nearby sites can be specified. Here is the list of on-lattice applications SPPARKS currently
includes:

diffusion = vacancy exchange diffusion model•
erbium = H/He diffusion/rection on an Erbium lattice•
ising = Ising model•
ising/single = variant Ising model•
membrane = membrane model of lipid,water,protein•
potts = Potts model for grain growth•
potts/neigh = variant Potts model•
potts/neighonly = variant Potts model•
potts/pin = Potts model with pinning sites•
potts/strain = Potts model with per-site strain•

Off-lattice applications define a set of mobile sites in space on which events occur. The sites typically represent
particles. Each site's neighborhood of nearby sites is defined by a cutoff distance. Here is the list of off-lattice
applications SPPARKS currently includes.

relax = Metropolis Monte Carlo relaxation•

General applications require no spatial information. Events are defined by the application, as well as the influence
of each event on others. Here is the list of general applications SPPARKS currently includes.

chemistry = biochemical reaction networks•
test/group = artificial chemical networks that test solve_style•

60

http://spparks.sandia.gov

The general applications in SPPARKS can only be evolved via a kinetic Monte Carlo (KMC) solver, specified by
the solve_style command. On-lattice and off-lattice applications can be evolved by either a KMC solver or a
rejection kinetic Monte Carlo (rKMC) method or a Metropolis (MMC) method. The rKMC and MMC methods
are specified by the sweep command. Not all on- and off-lattice applications support each option.

KMC models are sometimes called rejection-free KMC or the N-fold way or the Gillespie algorithm in the MC
literature. The application defines a list of "events" and associated rates for each event. The solver chooses the
next event, and the application updates the system accordingly. This includes updating of the time, which is done
accurately since rates are defined for each event. For general applications the definition of an "event" is arbitrary.
For on-lattice application zero or more possible events are typically defined for each site.

rKMC models are sometimes called null-event KMC or null-event MC. Sites are chosen via some method (see the
sweep command), and an event on that site is then selected which is accepted or rejected. Again, the application
defines the "events" for each site and associated rates which influence the acceptance or rejection. It also defines
the null event which is essentially part of the rejection probability.

For KMC and rKMC models, a time is associated with each event (including the null event) by rates that the user
defines. Thus event selection induces a time-accurate simulation. The MMC method is similar to the rKMC
method, except that it is not time-accurate. It selects an event to perform and accepts or rejects it, typically based
on an energy change in the system. There is no rate associated with the event, and no requirement that events be
chosen with relative probabilities corresponding to their rates. The Metropolis method tends to evolve the system
towards a low energy state. As with the rKMC method, the sweep command is used to determine how sites are
selected.

For all three methods (KMC, rKMC, MMC) the rules for how events are defined and are accepted or rejected are
discussed in the doc pages for the individual applications.

This table lists the different kinds of solvers and sweeping options that can be used for on- and off-lattice
applications in SPPARKS. Serial and parallel refer to running on one or many processors. Sector vs no-sector is
what is set by the sector command. The rKMC options are set by the sweep command. The MMC options are the
same as for rKMC.

method serial/no-sectors serial/sectors parallel/no-sectors parallel/sectors
exact KMC yes yes no yes

rKMC random yes yes no yes
rKMC raster yes yes no yes
rKMC color yes yes yes yes

rKMC color/strict yes no yes no
Note that masking can also be turned on for rKMC algorithms via the sweep command if the application supports
it. Off-lattice applications do not support the color or masking options.

Restrictions: none

Related commands: none

Default: none

61

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style test/group command

Syntax:

app_style test/group N Nmax pmax pmin delta keyword value

test/group = application style name•
N = # of events to choose from•
Mmax = max number of dependencies for each event•
pmax = max probability•
pmin = min probability•
delta = percentage adjustment factor for dependent probabilities•
zero or more keyword/value pairs may be appended•
keyword = lomem

lomem value = yes or no

•

Examples:

app_style test/group 10000 30 1.0 1.0e-6 5
app_style test/group 10000 30 1.0 1.0e-9 10 lomem yes

Description:

This is a general application which creates and evolves an artificial network of coupled events to test the
performance and scalability of various kinetic Monte Carlo solvers. See the paper by (Slepoy) for additional
details on how it has been used.

The set of coupled events can be thought of as a reaction network with N different chemical rate equations or
events to choose from. Each equation is coupled to M randomly chosen other equations, where M is a uniform
random number from 1 to Mmax. In a chemical reaction sense it is as if an executed reaction creates M product
molecules, each of which is a reactant in another reaction, affecting its probability of occurrence.

Initially, the maximum and minimum probability for each event is an exponentially distributed random value
between pmax and pmin. If solve_style group is used, these values should be the same as the pmax and pmin used
as parameters in that command. Pmin must be greater than 0.0.

As events are executed, the artificial network updates the probabilities of dependent reactions directly by
adjusting their probability by a uniform random number betwee -delta and +delta. Since delta is specified as a
percentatge, this means pold * (1 - delta/100) <= pnew <= pold * (1 + delta/100). Delta must be less than 100.

If the lomem keyword is set to no, then the random connectivity of the network is generated beforehand and
stored. This is faster when events are executed but limits the size of problem that will fit in memory. If lomem is
set to yes, then the connectivity is generated on the fly, as each event is executed.

This application can only be evolved using a kinetic Monte Carlo (KMC) algorithm. You must thus define a KMC
solver to be used with the application via the solve_style command

When the run command is used with this application it sets the number of events to perform, not the time for the
run. E.g.

62

http://spparks.sandia.gov

run 10000

means to perform 10000 events, not to run for 10000 seconds.

No additional commands are defined by this application.

Restrictions: none

Related commands:

solve_style group

Default:

The default value is lomem = no.

(Slepoy) Slepoy, Thompson, Plimpton, J Chem Phys, 128, 205101 (2008).

63

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

barrier command

Syntax:

barrier dstyle Q
barrier dstyle delta Q
barrier dstyle I J Q

dstyle = hop or schwoebel•
Q = barrier height (energy units)•
delta = difference in coordination number of 2 participating sites•
I,J = coordination numbers of 2 participating sites•

Examples:

barrier hop 0.25
barrier schwoebel 1 0.3
barrier hop -1 0.35
barrier hop 3 4 0.2
barrier schwoebel * * 0.1
barrier hop 2*5 3* 0.1

Description:

This command sets the energy barrier for a diffusive hop of an atom from an occupied site to a nearby vacant site.
See the app_style diffusion command for how the barrier is used in conjunction with the energy change of the
system due to the hop to calculate a probability for the hop to occur.

Barriers can be assigned to two kinds of diffusive hops. The first is a hop to a nearest-neighbor vacancy, which is
specified by setting dstyle to hop. The second is a Schwoebel hop to a 2nd nearest-neighbor vacancy, which is
specified by setting dstyle to schwoebel. The latter is only allowed if the app_style diffusion command also used
schwoebel for its dstyle setting.

Barriers are assigned based on two coordination numbers, for the initial site of the hopping atom and its final site.
In both cases the coordination count does not include the hopping atom itself. Thus typically
(Nmax+1)*(Nmax+1) values should be specified by using this command one or more times, which can be thought
of as an (I,J) matrix entries where both I and J vary from 0 to Nmax inclusive, when Nmax is the number of
neighbor sites for each lattice site. There is one such matrix for nearest-neighbor diffusive hops and one for
Schwoebel hops. Also note that it is permissible to have Qij != Qji to set forward/reverse rates, particularly if the
model does not use energies, but only barriers.

If only one argument Q is specified, then all matrix values are set to Q. If the Q value = 0.0, this effectively turns
off barriers in the model.

If two arguments delta and Q are specified, then all matrix elements where delta = J-I are set to Q.

If three arguments I and J and Q are specified, then the (I,J) element is set to Q. In this case, the I.J indices can
each be specified in one of two ways. An explicit numeric value can be used, as in the 4th example above. Or a
wild-card asterisk can be used to set the energy value for multiple coordination numbers. This takes the form "*"
or "*n" or "n*" or "m*n". If Nmax = the number of neighbor sites, then an asterisk with no numeric values means
all coordination numbers from 0 to Nmax. A leading asterisk means all coordination numbers from 0 to n
(inclusive). A trailing asterisk means all coordination numbers from n to Nmax (inclusive). A middle asterisk

64

http://spparks.sandia.gov

means all coordination numbers from m to n (inclusive).

The Q value should be in the energy units defined by the application's Hamiltonian and should be consistent with
the units used in any temperature command.

Restrictions:

This command can only be used as part of the app_style diffusion application.

Related commands:

deposition, ecoord

Default:

Energy barriers for all hop events are set to 0, which is effectively no barriers.

65

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

boundary command

Syntax:

dimension x y z

x,y,z = p or n in each dimension

p is periodic
n is non-periodic

•

Examples:

boundary p p n

Description:

Set the style of boundaries for the global simulation box in each dimension. The size of the simulation box is set
by the create_box or read_sites commands.

The style p means the box is periodic in that dimension, so that sites can interact across the boundary.

The styles n means the box is non-periodic in that dimension, so that sties do not interact across the boundary.

Note that the interaction of a pair of neighboring sites is really controlled by each of their neighbor lists which are
setup by either the create_sites or read sites commands. It is possible to have a periodic system with sites that do
not interact across the periodic boundary, because of the way the neighbor lists of sites near the boundary are
setup. See the create_sites or read sites for details.

IMPORTANT NOTE: The boundary command does not yet work with off-lattice applications.

Restrictions:

This command must be used before the simulation box is defined by a read_sites or create_box command.

A 2d simulation must be periodic in the z dimesion. A 1d simulation must be periodic in the y and z dimensions.

Related commands:

dimension

Default:

boundary p p p

66

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

clear command

Syntax:

clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all data, restores all settings to their default values, and frees all memory allocated by
SPPARKS. Once a clear command has been executed, it is as if SPPARKS were starting over, with only the
exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

67

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

count command

Syntax:

count species N

species = ID of chemical species•
N = count of molecules of this species•

Examples:

count kinase 10000
count NFkB-IKK 300

Description:

This command sets the molecular count of a chemical species for use in the app_style chemistry application.

The species ID can be any string defined by the add_species command.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_species, add_reaction

Default:

The count of a defined species is 0 unless set via this command.

68

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

create_box command

Syntax:

create_box region-ID

region-ID = ID of region to use as simulation domain•

Examples:

create_box mybox

Description:

This command creates a simulation box based on the specified region for on-lattice and off-lattice spatial
simulations. Thus a region command must first be used to define a geometric domain. SPPARKS encloses the
region (block, sphere, etc) with an axis-aligned (orthogonal) box which becomes the simulation domain.

The read_sites command can also be used to define a simulation box.

Restrictions:

The app_style command must be used to define an application before using the create_box command.

Related commands:

create_sites, region, read_sites

Default: none

69

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

create_sites command

Syntax:

create_sites style arg keyword values ...

style = box or region

box arg = none
region arg = region-ID

 region-ID = sites will only be created if contained in the region

•

zero or more keyword/value pairs may be appended•
keyword = value or basis

value values = label nvalue
 label = site or iN or dN
 nvalue = specific value to set all created sites to

basis values = M nvalue
 M = which basis site (see asterisk form below)
 nvalue = specific value to set all created basis sites to

•

Examples:

create_sites box
create_sites region surf value site 1
create_sites box value i2 0 basis 1 1 basis 2* 2

Description:

This command creates "sites" on a lattice for on-lattice and off-lattice applications. For on-lattice applications it
also defines a connectivity between sites that is stored as a neighbor list of nearby sites that each site interacts
with.

This command is an alternative to reading in site coordinates and neighbor connectivity via the read_sites
command.

To use this command, a simulation box must already exist, created via the create_box command. Likewise a
lattice must also be defined using the lattice command.

In SPPARKS, a "site" is a point in space at which an application, as defined by the app_style command, can
perform events. For on-lattice applications, the site is static and has a static set of neighboring sites with which it
interacts. For off-lattice applications, a site is like a particle. It moves and has a dynamic neighborhood of nearby
particles with which it interacts.

This command generates the set of lattice points that fall within the simulation box. For any periodic dimension,
as specified by the boundary command, the simulation box size must be an integer multiple of the lattice constant,
to insure consistent placement of sites near periodic boundaries. SPPARKS is careful to put exactly one site at a
periodic boundary (on either side of the box), not zero or two. For non-periodic dimensions, no checking near
boundaries is done; if the point is inside or on the boundary, it is a site. The one exception is that points that lie
exactly on the upper boundary (in a non-periodic dimension) are considered to be outside the box. Thus in
non-periodic dimensions you may need to tweak the simulation box size to get precisely the sites you want.

70

http://spparks.sandia.gov

For the box style, all lattice points that fall inside the simulation box are stored as sites, as described in the
preceding paragraph. For the region style, a lattice point must additionally be consistent with the region volume to
be stored as a site. Note that a region can be specified so that its volume is either inside or outside a geometric
boundary.

For on-lattice applications, after sites have been created, a neighbor list is also generated for each site, as defined
by each lattice style. Think of this as the set of lattice points near a central site, with which it interacts in the sense
defined by an application. If the simulation box is periodic in a dimension, the neighbors of a central site may
include sites on the other side of the box. This will not be the case for a non-periodic dimension. If some sites do
not exist, e.g. when using the region style, then some sites will not have a complete set of neighbors.

SPPARKS attempts to create sites with consecutive IDs from 1 to N, where N is the total number of sites that fill
the simulation box. The numbering is the same, independent of the number of processors. Note that if the
simulation box is non-periodic or the region style is used, some sites may not exist, so the site IDs will not
typically be contiguous. I.e. the largest ID will be greater than the number of created sites.

Depending on the application, each site stores zero of more integer and floating-point values. By default these are
set to zero when a site is created by this command. The value and basis keywords can override the default.

The value keyword specifies a per-site value that will be assigned to every site as it is created. The label
determines which per-site quantity is set. iN and dN mean the Nth integer or floating-point quantity, with 1 <= N
<= Nmax. Nmax is defined by the application. If label is specified as site it is the same as i1. The quantity is set to
the specified nvalue, which should be either an integer or floating-point numeric value, depending on what kind of
per-site quantity is being set.

The basis keyword can be used to override the value keyword setting for individual basis sites as each unit cell is
created. The per-site quantity (e.g. i2) specified by the value keyword is set for basis sites M. The quantity is set to
the specified nvalue for the basis keyword, instead of the nvalue from the value keyword. See the lattice
command for specifics on how basis atoms and unit cells are defined for each lattice style.

M can be specified in one of two ways. An explicit numeric value can be used, such as 2. A wild-card asterisk can
also be used in place of or in conjunction with the M argument to specify multiple basis sites together. This takes
the form "*" or "*n" or "n*" or "m*n". If N = the total number of basis sites, then an asterisk with no numeric
values means all sites from 1 to N. A leading asterisk means all sites from 1 to n (inclusive). A trailing asterisk
means all sites from n to N (inclusive). A middle asterisk means all sites from m to n (inclusive).

Restrictions:

The app_style command must be used to define an application before using the create_sites command. The
create_box command must be used to to define the simulation box before using the create_sites_command.

Related commands:

lattice, region, create_box, read_sites

Default: none

71

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

deposition command

Syntax:

deposition rate dirx diry dirz d0 lo hi

rate = rate of atom deposition (atom/sec units)•
dirx,diry,dirz = vector in direction of incidence•
d0 = capture distance (distance units)•
lo,hi = min/max coordination number of deposition site•

Examples:

deposition 1.0 0 -1 0 1.0 1 4
deposition 1.0 1 1 -1 1.0 3 10

Description:

This commands invokes deposition events in an on-lattice diffusion model, specified by the app_style diffusion
command.

Deposition events will compete with diffusive hop events in the diffusion model. Each time a deposition event is
selected, a random starting point at the top of the simulation box is selected (top y surface in 2d, top z surface in
3d). The atom trajectory is traced along its incident direction which is specified by (dirx,diry,dirz) and need not be
a unit vector. However, diry < 0 and dirz = 0 is required for 2d models. Similarly, dirz < 0 is required for 3d
models.

Candidate deposition sites are vacant sites within a perpendicular distance d0 from the incident trajectory which
also have a current coordination number C such that lo <= C <= hi. Note that d0 is specified in distance units
which will depend on how you setup your lattice via the app_style command. For example, if you specified you
lattice constant or box size in Angstroms, then the distance units for this command are Angstroms as well.

If the inicident angle is not vertical, then periodic images of the starting point with associated incident trajectories
are considered and the d0 capture distance is applied to whichever trajectory the candidate site is closest to, in a
perpendicular sense. This means x-periodicity in 2d and x- and y-periodicity in 3d.

For the set of candidate sites, the selected deposition site is the one closest to the starting point, measuring a
projected distance along the incident direction.

IMPORTANT NOTE: App_style diffusion defines valid sites as vacant (site value = 1) or occupied (value = 2).
When performing deposition, a row (2d) or plane (3d) of sites at the top of the system (where the deposited atoms
are incident from) should be set to a value of 3. This prevents those sites from being considered as candidate
deposition sites, due to them being neighbors of occupied sites at the bottom of the system in a periodic sense.

Restrictions:

This command can only be used as part of the app_style diffusion application.

Deposition can currently only be done in serial simulations, not parallel. In serial, it can not be used with multiple
sectors, only one sector.

72

http://spparks.sandia.gov

Related commands:

ecoord, barrier

Default: none

73

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

diag_style array command

Syntax:

diag_style array value mode value mode ...

array = style name of this diagnostic•
value = iN or dN•
mode = min or max or mean or sum

Examples:

diag_style array i2 mean
diag_style array d1 sum d1 min d1 max

Description:

The array diagnostic computes the mean, sum, min, or max for a per-site lattice value in the system. The
diagnostic can operate on one or more values in one or more modes (min, max, mean, sum). The results are
printed as stats output via the stats command.

Restrictions:

This diagnostic can only be used for on-lattice applications.

Related commands:

diag_style, stats

Default: none

•

74

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

diag_style cluster command

Syntax:

diag_style cluster keyword value keyword value ...

cluster = style name of this diagnostic•
zero or more keyword/value pairs may be appended•
see the diag_style command for additional keyword/value pairs that can be appended to a diagnostic
command and which must appear before these keywords

•

keyword = filename or dump

filename value = name
 name = name of file to write clustering results to

dump value = style filename
 style = standard or opendx
 filename = file to write viz data to

•

Examples:

diag_style cluster
diag_style cluster stats no delt 1.0 filename cluster3d.a.0.1.dat dump opendx cluster3d.a.0.1.dump

Description:

The cluster diagnostic computes a clustering analysis on all lattice sites in the system, identifying geometric
groupings of identical spin values, e.g. a grain in a grain growth model. The total number of clusters is printed as
stats output via the stats command.

Clustering uses a connectivity definition provided by the application (e.g. sites are adjacent and have same spin
value) to identify the set of connected clusters.

The variants cluster, cluster2d, and cluster3d are used with applications based on lattice, lattice2d, and lattice3d,
respectively.

The filename keyword allows an output file to be specified. Every time the cluster analysis is performed, the key
properties of each cluster are appended to this file. The output format is:

Clustering Analysis for Lattice (diag_style cluster)•
nglobal = total number of sites•
nprocs = number of processors•

Time = time•
ncluster = total number of cluster•
id ivalue dvalue size•
cluster id ivalue dvalue size•

cluster_id is an arbitrary integer assigned uniquely to each cluster. It will be different for different numbers of
processors.

ivalue is an application-specific integer associated with each cluster. For lattice applications, it is the spin value of

75

http://spparks.sandia.gov

all sites in the cluster dvalue is an application-specific double associated with each cluster. size is the numbers of
sites in the cluster.

The dump keyword causes the cluster ID for each site to be printed out in snapshot format which can be used for
visualization purposes. The cluster IDs are arbitrary integers such that two sites have the same ID if and only if
they belong to the same cluster. The standard setting generates LAMMPS-style. For cluster2d and cluster3d
styles only two values are printed for each site: site index and cluster ID. For the cluster style, three additional
values are printed: the x, y, and z coordinate of the site (for 2d lattices, z=0). These files can be visualized with
various tools in the LAMMPS package and the Pizza.py package.

The opendx keyword generates a set of files that can be read by the OpenDX script called aniso0.net to visualize
the clusters in 3D. The filenames are composed of the input filename, followed by a sequential number, followed
by '.dx'. Because the OpenDX format assumes a particular ordering of the sites, the opendx style can only be used
with square and simple cubic lattices.

Restrictions:

This diagnostic can only be used for on-lattice applications.

Applications need to provide push_connected_neighbors() and connected_ghosts() functions which are called by
this diagnostic. If they are not defined, SPPARKS will print an error message.

Related commands:

diag_style, stats

Default: none

76

http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

diag_style diffusion command

Syntax:

diag_style diffusion keyword value keyword value ...

diffusion = style name of this diagnostic zero or more keyword/value pairs may be appended

see the diag_style command for keyword/value pairs that can be appended to a diagnostic command•

Examples:

diag_style diffusion

Description:

The diffusion diagnostic calculates outputs various statistics about the different events that have occurred in a
cummulative sense since the simulation began. These values are printed as stats output via the stats command.

There are 4 kinds of events tallied, not all of which may occur depending on the parameters used in defining the
app_style diffusion model.

successful deposition event•
failed deposition event•
1st neighbor hop•
2nd neighbor hop•

A successful deposition event is one that resulted in an atom added to the lattice. A failed deposition event is
one that was attempted, but no suitable site could be found and thus no atom was added. A 1st neighbor hop is
a diffusion hop from a lattice site to a nearest-neighbor vacancy. A 2nd neighbor hop is a Schwoebel hop from
a lattice site to a 2nd nearest-neighbor vacancy. See the app_style diffusion command for more info on how
Schwoebel hops occur.

Restrictions:

This diagnostic can only be used with the app_style diffusion application.

Related commands:

diag_style, stats

Default: none

•

77

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

diag_style energy command

Syntax:

diag_style energy keyword value keyword value ...

energy = style name of this diagnostic•
see the diag_style command for additional keywords that can be appended to a diagnostic command•

Examples:

diag_style energy

Description:

The energy diagnostic computes the total energy of all lattice sites in the system. The energy is printed as stats
output via the stats command.

Restrictions:

This diagnostic can only be used for on-lattice applications.

Related commands:

diag_style, stats

Default: none

78

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

diag_style erbium command

Syntax:

diag_style erbium keyword value keyword value ...

erbium = style name of this diagnostic•
zero or more keyword/value pairs may be appended•
see the diag_style command for additional keyword/value pairs that can be appended to a diagnostic
command and which must appear before these keywords

•

keyword = list

list values = er or h or he or vac or events or sN or dN or tN
er,h,he,vac = counts of how many lattice sites of this type exist
events = total # of events for all sites
sN,dN,tN = cummulative # of events for this reaction that have occurred

•

Examples:

diag_style erbium stats yes list h he vac events s1 d1 t2

Description:

The erbium diagnostic prints out statistics about the system being modeled by app_style erbium. The values will
be printed as part of stats output.

Following the list keyword you can list one or more of the listed values, in any order.

The er, h, he, and vac values will print counts of the number of current sites of each type. The events value will
print the total # of possible events that can occur as defined by the event command, given the current state of the
lattice, summed over all sites.

The sN, dN, and tN values refer to a tally of events that have actually occurred, as defined by the event command.
The letter "s" means reactions involving a single site, "d" means double reactions involving 2 sites, and "t" means
triple reactions involving 3 sites. The N refers to which reaction (from 1 to the number of that type of reaction).
I.e. "t2" means the 2nd 3-site reaction defined in your input script. Note that the values printed for sN, dN, and tN
are cummulative counts of events from the beginning of the simulation run.

Restrictions:

This command can only be used as part of the app_style erbium application.

Related commands:

diag_style, stats

Default: none

79

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

diag_style propensity command

Syntax:

diag_style propensity keyword value keyword value ...

propensity = style name of this diagnostic zero or more keyword/value pairs may be appended

see the diag_style command for keyword/value pairs that can be appended to a diagnostic command•

Examples:

diag_style propensity

Description:

The propensity diagnostic computes the total propensity of all lattice sites in the system. The propensity is
printed as stats output via the stats command.

The propensity can be thought of as the relative probablity of a site site to perform a KMC event. Note that if
you are doing Metropolis MC and not kinetic MC, no propensity is defined.

Restrictions:

This diagnostic can only be used for on-lattice applications.

This diagnostic can only be used for KMC simulations where a solver is defined.

Related commands:

diag_style, stats

Default: none

•

80

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

diag_style command

Syntax:

diag_style style keyword value keyword value ...

style = cluster or diffusion or energy or propensity•
zero or more keyword/value pairs may be appended•
keyword = stats or delay or delt or logfreq or loglinfreq

stats values = yes or no
 yes/no = provide output to stats line

delay values = tdelay
 tdelay = delay evaluating diagnostic until at least this time

delt values = delta
 delta = time increment between evaluations of the diagnostic (seconds)

logfreq or loglinfreq values = N factor
 N = number of repetitions per interval
 factor = scale factor between intervals

•

see doc pages for individual diagnostic commands for additional keywords - diagnostic-specific keywords
must come after any other standard keywords

•

Examples:

diag_style cluster stats no delt 1.0
diag_style energy

Description:

This command invokes a diagnostic calculation. Currently, diagnostics can only be defined for on-lattice
applications. See the app_style command for an overview of such applications.

The diagnostics currently available are:

array = statistics of lattice values•
cluster = grain size statistics for general lattices•
diffusion = statistics on diffusion events•
energy = energy of entire system for general lattices•
propensity = propensity of entire system for general lattices•

Diagnostics may provide one or more values that are appended to other statistical output and printed to the screen
and log file via the stats command. This is stats output. In addition, the diagnostic may write more extensive
output to its own files if requested by diagnostic-specific keywords.

The stats keyword controls whether or not the diagnostic appends values to the statistical output. If stats is set to
yes, then none of the other keywords can be used, since the frequency of the stats output will determine when the
diagnostic is called.

If stats is set to no, then the other keywords can be used, since presumably the diagnostic will create its own
output files. The delt keyword specificies Delta = the interval of time between each diagnostic calculation.

81

http://spparks.sandia.gov

Similarly, the logfreq and loglinfreq keywords will cause the diagnostic to run at progressively larger intervals
during the course of a simulation. There will be N outputs per interval where the size of each interval scales up by
factor each time. Delta is the time between outputs in the first (smallest) interval. See the stats command for more
information on how the output times are specified. See the stats command for more information on how the
intervals are specified.

If N is specified as 0, then this will turn off logarithmic intervals, and revert to regular intervals of delta.

The delay keyword specifies the shortest time at which the diagnostic can be evaluated. This is useful if it is
inconvenient to evaluate the diagnostic at time t=0.

Restrictions: none

Related commands:

stats

Default:

The stats setting is yes.

82

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

dimension command

Syntax:

dimension N

N = 1 or 2 or 3•

Examples:

dimension 2

Description:

Set the dimensionality of the simulation for spatial on-lattice or off-lattice models. By default SPPARKS runs 3d
simulations. To run a 1d or 2d simulation, this command should be used prior to setting up a simulation box via
the create_box or read_sites commands.

Restrictions:

This command must be used before the simulation box is defined by a read_sites or create_box command.

Related commands: none

Default:

dimension 3

83

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

dump command

dump image command

Syntax:

dump dump-ID style delta filename field1 field2 ...

dump-ID = user-assigned name for the dump•
style = text or image•
delta = time increment between dumps (seconds)•
filename = name of file to dump snapshots to•
fields = list of arguments for a particular style

image fields = discussed on dump image doc page
text fields = id or site or x or y or z or

energy or propensity or iN or dN

•

Examples:

dump 1 text 0.25 tmp.dump
dump 1 text 1.0 my.dump id site x y z
dump mydump text 5.0 snap.ising id site energy i1

Description:

The text style dumps a snapshot of site values to one or more files at time intervals of delta during a simulation.
The image style creates a JPG or PPM image file of the site configuration every at time intervals of delta, as
discussed on the dump image doc page. The remainder of this page refers to the text style.

As described below, the filename determines the kind of output (text or binary or gzipped, one big file or one per
timestep, one big file or one per processor). The quantities printed are obtained from the application. Only
on-lattice and off-lattice applications support dumps since they are spatial in nature. More that one dump
command and file can be used during a simulation by giving each a unique dump-ID. Note that if written in
appropriate format, a snapshot from a dump file can easily be converted into a data file suitable for input via the
read_sites command to restart a simulation.

IMPORTANT NOTE: When running in parallel, the order of sites as printed to the dump file will be in chunks by
processor, not ordered by ID. The order will be the same in every snapshot.

The dump_modify command can be used to alter the times at which snapshots are written out as well as defined a
subset of sites to write out.

The text-based dump file is in the format of a LAMMPS dump file which can thus be read-in by the Pizza.py
toolkit, converted to other formats, or used for visualization. An important modification to the LAMMPS-style
header for each snapshot is the addition of real time to the line containing the snapshot number, i.e.

ITEM: TIMESTEP TIME
100 3.23945

84

http://spparks.sandia.gov
http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html

The entry for "NUMBER OF ATOMS" is really number of sites, and will reflect any reduction in site count due
to the dump_modify command, i.e.

ITEM: NUMBER OF ATOMS
314159

If fields are listed, then only those quantities will be printed for each site. If no fields are listed, then a default set
of fields are output, namely "id site x y z". These are the possible field values which may be specified.

The id is a unique integer ID for each site.

The site, iN, and dN fields specify a per-site value. Site is the same as i1. iN fields are integer values; dN fields are
floating-point value. The application defines how many integer and floating=point values are stored for each site.

The x, y, z values are the coordinates of the site.

The energy value is what is computed by the energy() function in the application. Likewise for the propensity
value which can be thought of as the relative probablity for that site to perform a KMC event. Note that if the
application only performs rejection KMC or Metropolis MC, then no propensity is defined.

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when
SPPARKS exits.

Dump filenames can contain two wild-card characters. If a "*" character appears in the filename, then one file per
snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.* becomes
tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc.

If a "%" character appears in the filename, then one file is written for each processor and the "%" character is
replaced with the processor ID from 0 to P-1. For example, tmp.dump.% becomes tmp.dump.0, tmp.dump.1, ...
tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on parallel machines that support
parallel I/O for output.

Note that the "*" and "%" characters can be used together to produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format. A
binary dump file will be about the same size as a text version, but will typically write out much faster. Of course,
when post-processing, you will need to convert it back to text format, using your own code to read the binary file.
The format of the binary file can be understood by looking at the src/dump.cpp file.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format. A
gzipped dump file will be about 3x smaller than the text version, but will also take longer to write.

Restrictions:

This command can only be used as part of on-lattice or off-lattice applications. See the app_style command for
further details.

To write gzipped dump files, you must compile SPPARKS with the -DSPPARKS_GZIP option - see the Making
SPPARKS section of the documentation.

Related commands:

85

dump_one, dump_modify, undump, stats

Default: none

86

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

dump image command

Syntax:

dump dump-ID image delta filename color diameter keyword value ...

ID = user-assigned name for the dump•
image = style of dump command (other style text is discussed on the dump doc page)•
delta = time increment between dumps (seconds)•
filename = name of file to write image to•
color = attribute that determines color of each site•
diameter = attribute that determines size of each site•
zero or more keyword/value pairs may be appended•
keyword = shape or sdiam or bdiam or crange or drange or size or view or center or up or zoom or persp
or box or axes or shiny or ssao

shape value = sphere or cube
sdiam value = number = numeric value for site diameter (distance units)
boundary values = attribute width

 attribute = attribute to use for drawing boundaries between sites
 width = width of boundary cylinders

crange values = lo hi
 lo,hi = lower and upper bound (inclusive) of integer color attribute

drange values = lo hi
 lo,hi = lower and upper bound (inclusive) of integer diameter attribute

size values = width height = size of images
 width = width of image in # of pixels
 height = height of image in # of pixels

view values = theta phi = view of simulation box
 theta = view angle from +z axis (degrees)
 phi = azimuthal view angle (degrees)
 theta or phi can be a variable (see below)

center values = flag Cx Cy Cz = center point of image
 flag = "s" for static, "d" for dynamic
 Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)
 Cx,Cy,Cz can be variables (see below)

up values = Ux Uy Uz = direction that is "up" in image
 Ux,Uy,Uz = components of up vector
 Ux,Uy,Uz can be variables (see below)

zoom value = zfactor = size that simulation box appears in image
 zfactor = scale image size by factor > 1 to enlarge, factor <1 to shrink
 zfactor can be a variable (see below)

persp value = pfactor = amount of "perspective" in image
 pfactor = amount of perspective (0 = none, <1 = some, > 1 = highly skewed)
 pfactor can be a variable (see below)

box values = yes/no diam = draw outline of simulation box
 yes/no = do or do not draw simulation box lines
 diam = diameter of box lines as fraction of shortest box length

axes values = yes/no length diam = draw xyz axes
 yes/no = do or do not draw xyz axes lines next to simulation box
 length = length of axes lines as fraction of respective box lengths
 diam = diameter of axes lines as fraction of shortest box length

shiny value = sfactor = shinyness of spheres and cylinders
 sfactor = shinyness of spheres and cylinders from 0.0 to 1.0

ssao value = yes/no seed dfactor = SSAO depth shading
 yes/no = turn depth shading on/off
 seed = random # seed (positive integer)
 dfactor = strength of shading from 0.0 to 1.0

•

87

http://spparks.sandia.gov

Examples:

dump myDump image 100 dump.*.jpg site site
dump myDump image 100 dump.*.jpg energy i2

Description:

Dump a high-quality ray-traced image of the sites at time intervals of delta during a simulation as either a JPG or
PPM file. A series of such images can easily be converted into an animated movie of your simulation; see further
details below. The text dump style writes snapshots of numerical data asociated with sites, as discussed on the
dump doc page.

Here are two sample images, rendered as 1024x1024 JPG files. The left image is a million-site lattice; the right
image is half a billion sites. Click to see the full-size images:

The dump_modify command can be used to alter the times at which images are written out as well as alter what
sites are included in the image.

The filename suffix determines whether a JPG or PPM file is created. If the suffix is ".jpg" or ".jpeg", then a JPG
file is created, else a PPM file is created, which is a text-based format. To write out JPG files, you must build
SPPARKS with a JPEG library. See this section of the manual for instructions on how to do this.

Dump image filenames must contain a wildcard character "*", so that one image file per snapshot is written. The
"*" character is replaced with the timestep value. For example, tmp.dump.*.jpg becomes tmp.dump.0.jpg,
tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that the dump_modify pad command can be used to insure
all timestep numbers are the same length (e.g. 00010), which can make it easier to convert a series of images into
a movie in the correct ordering.

The color and diameter settings determine the color and size of sites rendered in the image. They can be any
attribute defined for the dump text command, including site. Note that the diameter setting can be overridden with
a numeric value by the optional sdiam keyword, in which case you can specify the diameter setting with any valid
atom attribute.

If an integer attribute such as site or i2 is specified for the color setting, then you must use the optional crange
keyword to specify the range of integer values that are allowed, from lo to hi. The color of each site is determined
by the integer value. By default the mapping of values to colors is done by looping over the set of pre-defined
colors listed with the dump_modify command, and assiging the first one to value lo, the next to value lo+1, and so
on, repeating the assignment in a loop if the number of values exceeds the number of pre-defined colors. This

88

mapping can be changed by the dump_modify scolor command.

If a floating point attribute such as energy or d1 is specified for the color setting, then the site's attribute will be
associated with a specific color via a "color map", which can be specified via the dump_modify command. The
basic idea is that the attribute will be within a range of values, and every value within the range is mapped to a
specific color. Depending on how the color map is defined, that mapping can take place via interpolation so that a
value of -3.2 is halfway between "red" and "blue", or discretely so that the value of -3.2 is "orange".

If an integer attribute such as site or i2 is specified for the diameter setting, then you must use the optional drange
keyword to specify the range of integer values that are allowed. The size of each site is determined by the integer
value. By default all values has diameter 1.0. This mapping can be changed by the dump_modify sdiam
command.

If a floating point attribute such as energy or d1 is specified for the diameter setting, then the site will be rendered
using the site's attribute as the diameter. If the per-site value <= 0.0, then the site will not be drawn.

The various kewords listed above control how the image is rendered. As listed below, all of the keywords have
defaults, most of which you will likely not need to change. The dump modify also has options specific to the
dump image style, particularly for assigning colors to atoms, bonds, and other image features.

The shape keyword can be specied with a value of sphere or cube, to draw either a sphere or cube at each site.
Cubes typically only make sense for simple square or cubic lattices with regular spacing, so that the cubes will tile
the 2d or 3d space without overlapping. The diameter specified for each site will be the diamter of the sphere or
the edge length of the cube.

The sdiam keyword allows you to override the diameter setting with a specified numeric value. All sites will be
drawn with that diameter.

The boundary keyword enables drawing of boundaries bewteen neighboring sites that have a different value of
the specified attribute. This is a way to visualize the boundary between two contiguous groups of sites based on
an attribute that is different for the two groups, even if the sites themselves in the 2 groups are rendered with the
same color (due to the value of their color setting).

The specified attribute can be any attribute defined for the dump text command, including site. A boundary is
only drawn between site pairs (I,J), where site I is rendered by the dump image command, site J is one of its
nearest neighbors, and the value of the specified attribute is different for the 2 sites.

The boundary itself is drawn as 4 cylinders which outline a square. If the 2 adjacent sites are rendered as cubes
(via the shape setting), then the square is the face common to the 2 adjacent cubes. The diameter of the cylinders
is set via the bdiam keyword. The color of the cylinders can be set via the dump_modify boundcolor command.

The crange keyword must be used if the specified color setting is an integer attribute such as site or i2. The lo and
hi values are the range of values that the attribute can have. For example, if spins in a Potts model will range from
1 to 100 (inclusive), then lo nd hi should be specified as 1 and 100.

The drange keyword must be used if the specified diameter setting is an integer attribute such as site or i2, unless
the sdiam keyword is used, in which case the diameter setting is ignored. The lo and hi values are the range of
values that the attribute can have. For example, if the i2 attibute will take on the values -1, 0, or 1, then then lo nd
hi should be specified as -1 and 1

The size keyword sets the width and height of the created images, i.e. the number of pixels in each direction.

89

The view, center, up, zoom, and persp values determine how 3d simulation space is mapped to the 2d plane of the
image. Basically they control how the simulation box appears in the image.

All of the view, center, up, zoom, and persp values can be specified as numeric quantities, whose meaning is
explained below. Any of them can also be specified as an equal-style variable, by using v_name as the value,
where "name" is the variable name. In this case the variable will be evaluated on the timestep each image is
created to create a new value. If the equal-style variable is time-dependent, this is a means of changing the way
the simulation box appears from image to image, effectively doing a pan or fly-by view of your simulation.

The view keyword determines the viewpoint from which the simulation box is viewed, looking towards the center
point. The theta value is the vertical angle from the +z axis, and must be an angle from 0 to 180 degrees. The phi
value is an azimuthal angle around the z axis and can be positive or negative. A value of 0.0 is a view along the
+x axis, towards the center point. If theta or phi are specified via variables, then the variable values should be in
degrees.

The center keyword determines the point in simulation space that will be at the center of the image. Cx, Cy, and
Cz are speficied as fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of the simulation box. These
values do not have to be between 0.0 and 1.0, if you want the simulation box to be offset from the center of the
image. Note, however, that if you choose strange values for Cx, Cy, or Cz you may get a blank image. Internally,
Cx, Cy, and Cz are converted into a point in simulation space. If flag is set to "s" for static, then this conversion is
done once, at the time the dump command is issued. If flag is set to "d" for dynamic then the conversion is
performed every time a new image is created. If the box size or shape is changing, this will adjust the center point
in simulation space.

The up keyword determines what direction in simulation space will be "up" in the image. Internally it is stored as
a vector that is in the plane perpendicular to the view vector implied by the theta and pni values, and which is also
in the plane defined by the view vector and user-specified up vector. Thus this internal vector is computed from
the user-specified up vector as

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it cannot be parallel to the view vector, implied
by the theta and phi values.

The zoom keyword scales the size of the simulation box as it appears in the image. The default zfactor value of 1
should display an image mostly filled by the atoms in the simulation box. A zfactor > 1 will make the simulation
box larger; a zfactor < 1 will make it smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in the image. Depth perspective makes
lines that are parallel in simulation space appear non-parallel in the image. A pfactor value of 0.0 means that
parallel lines will meet at infininty (1.0/pfactor), which is an orthographic rendering with no persepctive. A
pfactor value between 0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will create a highly
skewed image with a large amount of perspective.

IMPORTANT NOTE: The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are rendered as thin cylinders in the image. If no
is set, then the box boundaries are not drawn and the diam setting is ignored. If yes is set, the 12 edges of the box
are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d). The color of
the box boundaries can be set with the dump_modify boxcolor command.

90

The axes keyword determines how the coordinate axes are rendered as thin cylinders in the image. If no is set,
then the axes are not drawn and the length and diam settings are ignored. If yes is set, 3 thin cylinders are drawn
to represent the x,y,z axes in colors red,green,blue. The origin of these cylinders will be offset from the lower left
corner of the box by 10%. The length setting determines how long the cylinders will be as a fraction of the
respective box lengths. The diam setting determines their thickness as a fraction of the shortest box length in x,y,z
(for 3d) or x,y (for 2d).

The shiny keyword determines how shiny the objects rendered in the image will appear. The sfactor value must be
a value 0.0 <= sfactor <= 1.0, where sfactor = 1 is a highly reflective surface and sfactor = 0 is a rough non-shiny
surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO) model for depth shading. If yes is set,
then atoms further away from the viewer are darkened via a randomized process, which is perceived as depth. The
calculation of this effect can increase the cost of computing the image by roughly 2x. The strength of the effect
can be scaled by the dfactor parameter. If no is set, no depth shading is performed.

A series of JPG or PPM images can be converted into a movie file and then played as a movie using commonly
available tools.

Convert JPG or PPM files into an animated GIF or MPEG or other movie file:

a) Use the ImageMagick convert program.

% convert *.jpg foo.gif
% convert *.ppm foo.mpg

•

b) Use QuickTime.

Select "Open Image Sequence" under the File menu Load the images into QuickTime to animate them
Select "Export" under the File menu Save the movie as a QuickTime movie (*.mov) or in another format

•

c) Windows-based tool.•

If someone tells us how to do this via a common Windows-based tool, we'll post the instructions here.

Play the movie:

a) Use your browser to view an animated GIF movie.

Select "Open File" under the File menu Load the animated GIF file

•

b) Use the freely available mplayer tool to view an MPEG movie.

% mplayer foo.mpg

•

c) Use the Pizza.py animate tool, which works directly on a series of image files.

a = animate("foo*.jpg")

•

d) QuickTime and other Windows-based media players can obviously play movie files directly.•

Restrictions:

To write JPG images, you must use a -DSPPARKS_JPEG switch when building SPPARKS and link with a JPEG
library. See the Making LAMMPS section of the documentation for details.

Related commands:

91

http://www.sandia.gov/~sjplimp/pizza.html
http://www.sandia.gov/~sjplimp/pizza/doc/animate.html

dump, dump_modify, undump

Default:

The defaults for the keywords are as follows:

shape = sphere•
sdiam = not specified (use diameter setting)•
boundary = no default•
crange = no default•
drange = no default•
size = 512 512•
view = 60 30 (for 3d)•
view = 0 0 (for 2d)•
center = s 0.5 0.5 0.5•
up = 0 0 1 (for 3d)•
up = 0 1 0 (for 2d)•
zoom = 1.0•
persp = 0.0•
box = yes 0.02•
axes = no 0.0 0.0•
shiny = 1.0•
ssao = no•

92

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

dump_modify command

Syntax:

dump_modify dump-ID keyword values ...

dump-ID = ID of dump to modify•
one or more keyword/value pairs may be appended•
keyword = backcolor or boundcolor or boxcolor or color or delay or delta or flush or logfreq or loglinfreq
or pad or region or scolor or sdiam or smap or thresh

backcolor arg = color
 color = name of color for background

boundcolor arg = color
 color = name of color for boundaries between sites

boxcolor arg = color
 color = name of color for box lines

color args = name R G B
 name = name of color
 R,G,B = red/green/blue numeric values from 0.0 to 1.0

delay value = tdelay
 tdelay = delay dump until at least this time (seconds)

delta arg = dt
 dt = time increment between dumps (seconds)

flush arg = yes or no
logfreq or loglinfreq values = N factor

 N = number of repetitions per interval
 factor = scale factor between intervals

pad arg = Nchar = # of characters to convert timestep to
region arg = region-ID or "none"
scolor args = I color

 I = integer value or range of values (see below)
 color = name of color or color1/color2/... or random

sdiam args = I diam
 I = integer value or range of values (see below)
 diam = diameter of sites of that value

smap args = lo hi style delta N entry1 entry2 ... entryN
 lo = number or min = lower bound of range of color map
 hi = number or max = upper bound of range of color map
 style = 2 letters = "c" or "d" or "s" plus "a" or "f"
 "c" for continuous
 "d" for discrete
 "s" for sequential
 "a" for absolute
 "f" for fractional
 delta = binsize (only used for style "s", otherwise ignored)
 binsize = range is divided into bins of this width
 N = # of subsequent entries
 entry = value color (for continuous style)
 value = number or min or max = single value within range
 color = name of color used for that value
 entry = lo hi color (for discrete style)
 lo/hi = number or min or max = lower/upper bound of subset of range
 color = name of color used for that subset of values
 entry = color (for sequential style)
 color = name of color used for a bin of values

thresh args = attribute operation value
 attribute = same fields (id,lattice,x,etc) used by dump command
 operation = "" or ">=" or "==" or "!="

•

93

http://spparks.sandia.gov

 value = numeric value to compare to
 these 3 args can be replaced by the word "none" to turn off thresholding

Examples:

dump_modify 1 delay 30.0
dump_modify 1 loglinfreq 7 10.0 delay 100.0 flush yes
dump_modify mine thresh energy > 0.0 thresh id <= 1000

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to both the text
and image dump styles.

The backcolor keyword applies only to the dump image style. It sets the background color of the images. The
color name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify
color option.

The boundcolor keyword applies only to the dump image style. It sets the color used to draw boundaries between
sites, each of which is a set of 4 cylinders, as described in the dump image doc page. The color name can be any
of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

The drawing of boundaries between neighboring sites is enabled by the boundary keyword of the dump image
command.

The boxcolor keyword applies only to the dump image style. It sets the color of the simulation box drawn around
the sites in each image. See the "dump image box" command for how to specify that a box be drawn. The color
name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color
option.

The color keyword applies only to the dump image style. It allows definition of a new color name, in addition to
the 140-predefined colors (see below), and associates 3 red/green/blue RGB values with that color name. The
color name can then be used with any other dump_modify keyword that takes a color name as a value. The RGB
values should each be floating point values between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140
pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined color
names with new RBG values.

The delay keyword will suppress output until tdelay time has elapsed.

The delta keyword will suppress output until tdelay time has elapsed.

The flush option determines whether a flush operation in invoked after a dump snapshot is written to the dump
file. A flush insures the output in that file is current (no buffering by the OS), even if SPPARKS halts before the
simulation completes. The flush option is only relevant to the dump text style.

The logfreq and loglinfreq keywords will produce output at progressively larger intervals during the course of a
simulation. There will be N outputs per interval where the size of each interval is initially delta and then scales up
by factor each time. See the stats command for more information on how the output times are specified.

If N is specified as 0, then this will turn off logarithmic output, and revert to regular output every delta seconds.

94

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which becomes
the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded length, e.g. 100
or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading zeroes so they are
all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000. This can be useful so
that post-processing programs can easily read the files in ascending timestep order.

The region keyword allows sub-selection of lattice sites to output. If specified, only sites in the region will be
written to the dump file or included in the image. Only one region can be applied as a filter (the last one
specified). See the region command for more details. Note that a region can be defined as the "inside" or "outside"
of a geometric shape, and it can be the "union" or "intersection" of a series of simpler regions.

The scolor keyword applies only to the dump image style. It can be used with the dump image command, when
its site color setting is an integer attribute, and a crange setting from lo to hi has been specified to set the color
associated with each integer value.

The specified I value should be an integer from lo to hi inclusive. A wildcard asterisk can be used in place of or in
conjunction with the type argument to specify a range of values. This takes the form "*" or "*n" or "n*" or "m*n".
An asterisk with no numeric values means all values from lo to hi. A leading asterisk means all values from lo to
n (inclusive). A trailing asterisk means all values from n to hi (inclusive). A middle asterisk means all values from
m to n (inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color name
defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character, e.g.
red/green/blue. In the former case, that color is assigned to all the specified integer values. In the latter case, the
list of colors are assigned in a round-robin fashion to each of the specified integer values.

The specified color can also be the word random. In this case, random red/blue/green color values, each from 0.0
to 1.0, are generated for each I value. This is a convenient way to assign a large number of random colors, without
having to list them explicitly by name.

The sdiam keyword applies only to the dump image style. It can be used with the dump image command, when its
site diameter setting is an integer attribute, and a drange setting from lo to hi has been specified to set the
diameter associated with each integer value. The specified I value should be an integer from lo to hi. As with the
scolor keyword, a wildcard asterisk can be used as part of the I argument to specify a range of values.

The smap keyword applies only to the dump image style. It can be used with the dump image command, when its
site color setting is a floating point attribute, to setup a color map. The color map is used to assign a specific RGB
(red/green/blue) color value to an individual site when it is drawn, based on the atom's attribute, which is a
numeric value, e.g. its x coordinate, if the attribute "x" was specified.

The basic idea of a color map is that the site-attribute will be within a range of values, and that range is associated
with a series of colors (e.g. red, blue, green). An sites's specific value (x = -3.2) can then mapped to the series of
colors (e.g. halfway between red and blue), and a specific color is determined via an interpolation procedure.

There are many possible options for the color map, enabled by the smap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the site attribute. If numeric values are used for lo
and/or hi, then values that are lower/higher than lo/hi are set to either lo or hi. I.e. the range is static. If lo is
specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be calculated each
time an image is drawn, based on the set of sites being visualized.

95

The style setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s" for
sequential. The second letter is either "a" for absolute, or "f" for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range. A
discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A
sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values covering
the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as values
within the range. A fractional color map is one in which the values to which colors are assigned are specified as a
fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red is to be assigned
to atoms with a value of 5.0, then for an absolute color map the number 5.0 would be used. But for a fractional
map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

The delta setting is only specified if the style is sequential. It specifies the bin size to use within the range for
assigning consecutive colors to. For example, if the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20
colors will be assigned to the range. The first will be from -10.0 <= color1 < -9.0, then 2nd from -9.0 <= color2 <
-8.0, etc.

The N setting is how many entries follow. The format of the entries depends on whether the color map style is
continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range of
values or min or max. The value of the first entry must be min and the value of the last entry must be max. Any
entries in between must have increasing values. Note that numeric values can be specified either as absolute
numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual site, given the value X of its site attribute.
X will fall between 2 of the entry values. The color of the site is linearly interpolated (in each of the RGB values)
between the 2 colors associated with those entries. For example, if X = -5.0 and the 2 surrounding entries are
"red" at -10.0 and "blue" at 0.0, then the site's color will be halfway between "red" and "blue", which happens to
be "purple".

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers
within the range of values or lo can be min or hi can be max. The lo and hi settings of the last entry must be min
and max. Other entries can have any lo and hi values and the sub-ranges of different values can overlap. Note that
numeric lo and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of the range,
depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual site, given the value X of its site attribute.
The entries are scanned from first to last. The first time that lo <= X <= hi, X is assigned the color associated with
that entry. You can think of the last entry as assigning a default color (since it will always be matched by X), and
the earlier entries as colors that override the default. Also note that no interpolation of a color RGB is done. All
sites will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color of
an individual site, given the value X of its site attribute. The range is partitioned into N bins of width binsize.
Thus X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2 bins, it is
considered to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N, then the
colors are repeated. For example if 2 entries with colors red and green are specified, then the odd numbered bins
will be red and the even bins green. The color of the site is the color of its bin. Note that the sequential color map

96

is really a shorthand way of defining a discrete color map without having to specify where all the bin boundaries
are.

The thresh keyword allows sub-selection of lattice sites to output. Multiple thresholds can be specified.
Specifying "none" turns off all threshold criteria. If thresholds are specified, only sites whose attributes meet all
the threshold criteria are written to the dump file or included in the image. The possible attributes that can be
tested for are the same as the fields that can be specified in the dump command. Note that different attributes can
be output by the dump command than are used as threshold criteria by the dump_modify command. E.g. you can
output the coordinates and propensity of sites whose energy is above some threshold.

Restrictions:

This command can only be used as part of the lattice-based applications. See the app_style command for further
details.

Related commands:

dump, dump image

Default:

The option defaults are

backcolor = black•
boundcolor = white•
boxcolor = yellow•
color = 140 color names are pre-defined as listed below•
delay = 0.0•
delta = value used in the dump command•
flush = yes•
logfreq = off•
loglinfreq = off•
pad = 0•
region = none•
scolor = * red/green/blue/yellow/aqua/cyan•
sdiam = * 1.0•
smap = min max cf 2 min blue max red•
thresh = none•

These are the 140 colors that SPPARKS pre-defines for use with the dump image and dump_modify commands.
Additional colors can be defined with the dump_modify color command. The 3 numbers listed for each name are
the RGB (red/green/blue) values. Divide each value by 255 to get the equivalent 0.0 to 1.0 value.

aliceblue = 240,
248, 255

antiquewhite = 250, 235,
215 aqua = 0, 255, 255 aquamarine = 127,

255, 212
azure = 240, 255,
255

beige = 245, 245,
220 bisque = 255, 228, 196 black = 0, 0, 0 blanchedalmond =

255, 255, 205 blue = 0, 0, 255

blueviolet = 138,
43, 226 brown = 165, 42, 42 burlywood = 222, 184,

135
cadetblue = 95, 158,
160

chartreuse = 127,
255, 0

chocolate = 210,
105, 30 coral = 255, 127, 80 cornflowerblue = 100,

149, 237
cornsilk = 255, 248,
220

crimson = 220, 20,
60

97

cyan = 0, 255, 255 darkblue = 0, 0, 139 darkcyan = 0, 139, 139 darkgoldenrod =184, 134, 11
darkgray = 169,
169, 169

darkgreen = 0, 100,
0

darkkhaki = 189, 183,
107

darkmagenta = 139, 0,
139

darkolivegreen = 85,
107, 47

darkorange = 255,
140, 0

darkorchid = 153,
50, 204 darkred = 139, 0, 0 darksalmon = 233,

150, 122
darkseagreen = 143,
188, 143

darkslateblue = 72,
61, 139

darkslategray = 47,
79, 79

darkturquoise = 0, 206,
209

darkviolet = 148, 0,
211

deeppink = 255, 20,
147

deepskyblue = 0,
191, 255

dimgray = 105, 105,
105

dodgerblue = 30, 144,
255 firebrick = 178, 34, 34 floralwhite = 255,

250, 240
forestgreen = 34,
139, 34

fuchsia = 255, 0,
255

gainsboro = 220, 220,
220

ghostwhite = 248, 248,
255 gold = 255, 215, 0 goldenrod = 218,

165, 32
gray = 128, 128,
128 green = 0, 128, 0 greenyellow = 173,

255, 47
honeydew = 240,
255, 240

hotpink = 255, 105,
180

indianred = 205, 92,
92 indigo = 75, 0, 130 ivory = 255, 240, 240 khaki = 240, 230,

140
lavender = 230, 230,
250

lavenderblush =
255, 240, 245 lawngreen = 124, 252, 0 lemonchiffon = 255,

250, 205
lightblue = 173, 216,
230

lightcoral = 240,
128, 128

lightcyan = 224,
255, 255

lightgoldenrodyellow =
250, 250, 210

lightgreen = 144, 238,
144

lightgrey = 211, 211,
211

lightpink = 255,
182, 193

lightsalmon = 255,
160, 122

lightseagreen = 32, 178,
170

lightskyblue = 135,
206, 250

lightslategray = 119,
136, 153

lightsteelblue = 176,
196, 222

lightyellow = 255,
255, 224 lime = 0, 255, 0 limegreen = 50, 205,

50
linen = 250, 240,
230

magenta = 255, 0,
255

maroon = 128, 0, 0 mediumaquamarine =
102, 205, 170

mediumblue = 0, 0,
205

mediumorchid =
186, 85, 211

mediumpurple =
147, 112, 219

mediumseagreen =
60, 179, 113

mediumslateblue = 123,
104, 238

mediumspringgreen =
0, 250, 154

mediumturquoise =
72, 209, 204

mediumvioletred =
199, 21, 133

midnightblue = 25,
25, 112

mintcream = 245, 255,
250

mistyrose = 255, 228,
225

moccasin = 255,
228, 181

navajowhite = 255,
222, 173

navy = 0, 0, 128 oldlace = 253, 245, 230 olive = 128, 128, 0 olivedrab = 107,
142, 35

orange = 255, 165,
0

orangered = 255,
69, 0 orchid = 218, 112, 214 palegoldenrod = 238,

232, 170
palegreen = 152,
251, 152

paleturquoise = 175,
238, 238

palevioletred = 219,
112, 147

papayawhip = 255, 239,
213

peachpuff = 255, 239,
213 peru = 205, 133, 63 pink = 255, 192,

203
plum = 221, 160,
221

powderblue = 176, 224,
230 purple = 128, 0, 128 red = 255, 0, 0 rosybrown = 188,

143, 143
royalblue = 65, 105,
225

saddlebrown = 139, 69,
19

salmon = 250, 128,
114

sandybrown = 244,
164, 96

seagreen = 46, 139,
87

seashell = 255, 245,
238 sienna = 160, 82, 45 silver = 192, 192, 192 skyblue = 135, 206,

235
slateblue = 106, 90,
205

slategray = 112,
128, 144 snow = 255, 250, 250 springgreen = 0, 255,

127
steelblue = 70, 130,
180 tan = 210, 180, 140

teal = 0, 128, 128 thistle = 216, 191, 216 tomato = 253, 99, 71 turquoise = 64, 224,
208

violet = 238, 130,
238

white = 255, 255, 255 yellow = 255, 255, 0

98

wheat = 245, 222,
179

whitesmoke = 245,
245, 245

yellowgreen = 154,
205, 50

99

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

dump_one command

Syntax:

dump_one dump-ID

dump-ID = ID of previously defined dump•

Examples:

dump_one mine
dump_one 2

Description:

Dump the current state of the lattice to the dump file defined by the dump command with this dump-ID. This can
be useful before or after a run, if the dump command itself did not produce a snapshot at the desired time or state.

The information dumped is determined by the dump command which must have been previously specified to use
the dump_one command.

Restrictions:

This command cannot be used to trigger the very first snapshot written to the file specified with the dump
command.

Related commands:

dump

Default: none

100

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether SPPARKS echoes each input script command to the screen and/or log file as it
is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

Restrictions: none

Related commands: none

Default:

echo log

101

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

ecoord command

Syntax:

ecoord N eng

N = coordination number (see asterisk form below)•
eng = energy of site with this coordination number (energy units)•

Examples:

ecoord 8 5.6
ecoord 0 1.0e20
ecoord * 1.0
ecoord 8*12 10.0

Description:

This command sets the energy of an occupied site in a lattice as a function of coordination number, where
coordination = the number of occupied neighbor sites. See the app_style diffusion nonlinear command for how
the energy change of the system due to a diffusive hop is used to calculate a probability for the hop to occur.

Typically, Nmax+1 values should be specified by using this command one or more times, with N varying from 0
to Nmax, when Nmax is the number of neighbor sites for each lattice site.

The N index can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example
above. Or a wild-card asterisk can be used to set the energy value for multiple coordination numbers. This takes
the form "*" or "*n" or "n*" or "m*n". If Nmax = the number of neighbor sites, then an asterisk with no numeric
values means all coordination numbers from 0 to Nmax. A leading asterisk means all coordination numbers from
0 to n (inclusive). A trailing asterisk means all coordination numbers from n to Nmax (inclusive). A middle
asterisk means all coordination numbers from m to n (inclusive).

Note that if the third example is specfied first, followed by the first example, then the effect would be to set the
energy value for all coordination numbers to 1.0, then overwrite the energy value for coordination number 8 to
5.6.

The eng value should be in the energy units defined by the application's Hamiltonian and should be consistent
with the units used in any temperature command.

Restrictions:

This command can only be used as part of the app_style diffusion nonlinear application.

Related commands:

deposition, barrier

Default:

Energy values for all coordination numbers are set to 0.

102

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

event command

Syntax:

event Nsite site1 site2 site3 old1 old2 old3 rate new1 new2 new3

Nsite = number of lattice sites involved in the event = 1,2,3•
site1,site2,site3 = fcc or tet or oct•
old1,old2,old3 = er or h or he or vac•
rate = rate constant for the event (inverse seconds or energy units)•
new1,new2,new3 = er or h or he or vac•

Examples:

event 1 tet h 1.78279E-9 he
event 1 oct h 1.78279E-9 he

event 2 tet tet h vac 0.98 vac h
event 2 tet oct h vac 1.89 vac h
event 2 tet oct vac h 0.68 h vac
event 2 tet tet he vac 0.49 vac he
event 2 oct oct he vac 1.49 vac he

event 3 tet oct oct h vac h 0.62 h h vac
event 3 tet oct tet h vac he 1.31 he h vac
event 3 tet oct tet he h vac 0.16 h vac he
event 3 tet oct oct h vac he 0.88 he h vac
event 3 tet oct oct he h vac 0.16 h vac he

Description:

This command defines an event for the "app_style erbium" application. It can be an event involving one, two, or
three lattice sites, as specified by Nsite. The first site is the central site which owns the event. The other 2 sites (if
specified) are neighors of the central site.

App_style erbium operates on a 3-fold lattice which contains fcc, tetrahedral, and octahedral sites. The site1,
site2, and site3 settings specify which kinds of sites are involved in the event: fcc or tet or oct. If Nsite = 1, then
only site1 is specified. If Nsite = 2, then only site1 and site2 are specified.

The old1, old2, and old3 settings specify what atoms must be on those sites in order for the event to potentially
take place. The possible atoms are er for erbium, h for hydrogen, he for helium, and vac for a vacant site. E.g. in
the first example above, a Hydrogen atom must be on a tetrahedral site for the event to be possible.

The rate setting determines the relative rate at which the event will occur. For Nsite=1 events, the units are
inverse seconds. For Nsite=2 or Nsite=3 events, the units are energy, which is converted into a rate via the
formula:

rate = exp(-energy/kT)

where T is the temperature you have specified.

In this case the rate setting should be in the energy units defined by the application's Hamiltonian and should be

103

http://spparks.sandia.gov

consistent with the units used in the temperature command.

The new1, new2, and new3 settings specify what atoms will be on which sites if the event takes place. As with the
old settings, the possible atoms are er for erbium, h for hydrogen, he for helium, and vac for a vacant site. E.g. in
the first example above, a Hydrogen atom on a tetrahedral site transmutes into a Helium atom if the event takes
place.

Note that the set of Nsite=1,2,3 events listed above are a reasonably full description of a reaction/diffusion model
for hydrogen interstitials in an erbium lattice.

Restrictions: none

This command can only be used as part of the app_style erbium application.

Related commands:

app_style erbium

Default: none

104

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

if command

Syntax:

if value1 operator value2 then command1 else command2

value1 = 1st value•
operator = "" or ">=" or "==" or "!="•
value2 = 2nd value•
then = required word•
command1 = command to execute if condition is met•
else = optional word•
command2 = command to execute if condition is not met (optional argument)•

Examples:

if ${steps} > 1000 then exit
if $x <= $y then "print X is smaller = $x" else "print Y is smaller = $y"
if ${eng} > 0.0 then "timestep 0.005"
if ${eng} > ${eng_previous} then "jump file1" else "jump file2"

Description:

This command provides an in-then-else test capability within an input script. Two values are numerically
compared to each other and the result is TRUE or FALSE. Note that as in the examples above, either of the values
can be variables, as defined by the variable command, so that when they are evaluated when substituted for in the
if command, a user-defined computation will be performed which can depend on the current state of the
simulation.

If the result of the if test is TRUE, then command1 is executed. This can be any valid SPPARKS input script
command. If the command is more than 1 word, it should be enclosed in double quotes, so that it will be treated as
a single argument, as in the examples above.

The if command can contain an optional "else" clause. If it does and the result of the if test is FALSE, then
command2 is executed.

Note that if either command1 or command2 is a bogus SPPARKS command, such as "exit" in the first example,
then executing the command will cause SPPARKS to halt.

Restrictions: none

Related commands:

variable

Default: none

105

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading SPPARKS commands from that file. When the
new file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input script
A includes script B, and B includes A, then SPPARKS could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, jump

Default: none

106

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

inclusion command

Syntax:

inclusion x y z r

x,y,z = position of center of protein inclusion•
r = radius of the protein•

Examples:

inclusion 10 12 0.0 2.0
inclusion 10 12 5.4 5.0

Description:

This command defines protein sites on a lattice and can only be used by app_style membrane applications.

Think of the protein as a sphere (or circle) centered at x,y,z and with a radius of r. All lattice sites within the
sphere (or circle) will be flagged as protein (as opposed to lipid or solvent). For lattices with a 2d geometry, the z
value should be speficied as 0.0.

Restrictions: none

This command can only be used as part of the app_style pore applications.

Related commands:

app_style membrane

Default: none

107

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

jump command

Syntax:

jump file label

file = filename of new input script to switch to•
label = optional label within file to jump to•

Examples:

jump newfile
jump in.run2 runloop

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
SPPARKS commands from that file. The original file is not returned to, although by using multiple jump
commands it is possible to chain from file to file or back to the original file.

Optionally, if a 2nd argument is used, it is treated as a label and the new file is scanned (without executing
commands) until the label is found, and commands are executed from that point forward. This can be used to loop
over a portion of the input script, as in this example. These commands perform 10 runs, each of 10000 steps, and
create 10 dump files named file.1, file.2, etc. The next command is used to exit the loop after 10 iterations. When
the "a" variable has been incremented for the tenth time, it will cause the next jump command to be skipped.

variable a loop 10
label loop
run 5.0
next a
jump in.lj loop

If the jump file argument is a variable, the jump command can be used to cause different processor partitions to
run different input scripts. In this example, SPPARKS is run on 40 processors, with 4 partitions of 10 procs each.
An in.file containing the example variable and jump command will cause each partition to run a different
simulation.

mpirun -np 40 lmp_ibm -partition 4x10 -in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Restrictions:

If you jump to a file and it does not contain the specified label, SPPARKS will come to the end of the file and
exit.

Related commands:

variable, include, label, next

Default: none

108

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

label command

Syntax:

label ID

ID = string used as label name•

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump command was used previously, this does
nothing. But if a jump command was used with a label argument to begin invoking this script file, then all
command lines in the script prior to this line will be ignored. I.e. execution of the script will begin at this line.
This is useful for looping over a section of the input script as discussed in the jump command.

Restrictions: none

Related commands: none

Default: none

109

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

lattice command

Syntax:

lattice style args

style = none or line/2n or sq/4n or sq/8n or tri or sc/6n or sc/26n or bcc or fcc or diamond or fcc/octa/tetra
or random/1d or random/2d or random/3d

none args: none
 all other styles except random = scale
 scale = lattice constant (distance units)

random/1d args = Nrandom cutoff
random/2d args = Nrandom cutoff
random/3d args = Nrandom cutoff

 Nrandom = # of random sites
 cutoff = distance within which sites are connected (distance units)

•

Examples:

lattice sq/4n 1.0
lattice fcc 3.52
lattice random/3d 10000 2.0
lattice none

Description:

Define a lattice for use by other commands. In SPPARKS, a lattice is simply a set of points in space, determined
by a unit cell with basis atoms, that is replicated infinitely in all dimensions. The arguments of the lattice
command can be used to define a wide variety of crystallographic lattices.

A lattice is used by SPPARKS in two ways. First, the create_sites command creates "sites" on the lattice points
inside the simulation box. Sites are used by an on-lattice or off-lattice application, specified by the app_style
command, which define events that change the values associated with sites (e.g. a spin flip) or the coordinates of
the site itself (for off-lattice applications).

Second, the lattice spacing in the x,y,z dimensions is used by other commands such as the region command to
define distance units and define geometric extents, for example in specifying the size of the simulation box via the
create_box command.

The lattice style must be consistent with the dimension of the simulation - see the dimension command and
descriptions of each style below.

A lattice consists of a unit cell, a set of basis sites within that cell. The vectors a1,a2,a3 are the edge vectors of the
unit cell. This is the nomenclature for "primitive" vectors in solid-state crystallography, but in SPPARKS the unit
cell they determine does not have to be a "primitive cell" of minimum volume.

For on-lattice applications (see the app_style command), the lattice definition also infers a connectivity between
lattice sites, which is used to generate the list of neighbors of each site. This information is ignored for off-lattice
applications. This means that for a 2d off-lattice application, it makes no difference whether a sq/4n or sq/8n
lattice is used; they both simply generate a square lattice of points.

110

http://spparks.sandia.gov

In the style descriptions that follow, a = the lattice constant defined by the lattice command. Sites within a unit
cell are defined as (x,y,z) where 0.0 <= x,y,z < 1.0.

A lattice of style line/2n is a 1d lattice with a1 = a 0 0 and one basis site per unit cell at (0,0,0). Each lattice point
has 2 neighbors.

Lattices of style sq/4n and sq/8n are 2d lattices with a1 = a 0 0 and a2 = 0 a 0, and one basis site per unit cell at
(0,0,0). The sq/4n style has 4 neighbors per site (east/west/north/south); the sq/8n style has 8 neighbors per site
(same 4 as sq/4n plus 4 corner points).

A lattice of style tri is a 2d lattice with a1 = a 0 0 and a2 = 0 sqrt(3)*a 0, and two basis sites per unit cell at (0,0,0)
and (0.5,0.5,0). Each lattice points has 6 neighbors.

Lattices of style sc/6n and sc/26n are 3d lattices with a1 = a 0 0 and a2 = 0 a 0 and a3 = 0 0 a, and one basis site
per unit cell at (0,0,0). The sc/6n style has 6 neighbors per site (east/west/north/south/up/down); the sc/26n style
has 26 neighbors per site (surrounding cube including edge and corner points).

Lattices of style bcc and fcc and diamond are 3d lattice with a1 = a 0 0 and a2 = 0 a 0 and a3 = 0 0 a. There are
two basis sites per unit cell for bcc, 4 basis sites for fcc, and 8 sites for diamond. The location of the basis sites are
defined in any solid-state physics or crystallography text. The bcc style has 8 neighbors per site, the fcc has 12,
and the diamond has 4.

A lattice of style fcc/octa/tetra is a 3d lattice with a1 = a 0 0 and a2 = 0 a 0 and a3 = 0 0 a. There are 16 basis sites
per unit cell, which consist of 4 fcc sites plus 4 octahedral and 8 tetrahedral interstitial sites. Again, these are
defined in solid-state physics texts. There are 26 neighbors per fcc and octahedral site, and 14 neihbors per
tetrahedral site. More specifically, the neighbors are as follows:

neighbors of each fcc site: 12 fcc, 6 octa, 8 tetra•
neighbors of each octa site: 6 fcc, 12 octa, 8 tetra•
neighbors of each tetra site: 4 fcc, 4 octa, 6 tetra•

The random lattice styles are 1d, 2d, and 3d lattices with a1 = 1 0 0 and a2 = 0 1 0 and a3 = 0 0 1. Note that no
scale parameter is defined and the unit cell is a unit cube, not a cube with side length a. Thus a region command
using one of these lattices will define its geometric region directly, not as multiples of the scale parameter. When
the create_sites command is used, it will generate a collection of Nrandom points within the corresponding 1d, 2d,
or 3d region or simulation box. The number of neighbors per site is defined by the specified cutoff parameter.
Two sites I,J will be neighbors of each other if they are closer than the cutoff distance apart.

The command "lattice none" can be used to turn off a previous lattice definition. Any command that attempts to
use the lattice directly will then generate an error. No additional arguments need be used with "lattice none".

Restrictions: none

Related commands:

dimension, create_sites, region

Default: none

111

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

log command

Syntax:

log file

file = name of new logfile•

Examples:

log log.equil

Description:

This command closes the current SPPARKS log file, opens a new file with the specified name, and begins
logging information to it. If the specified file name is none, then no new log file is opened.

If multiple processor partitions are being used, the file name should be a variable, so that different processors do
not attempt to write to the same log file.

The file "log.spk" is the default log file for a SPPARKS run. The name of the initial log file can also be set by the
command-line switch -log. See this section for details.

Restrictions: none

Related commands: none

Default:

The default SPPARKS log file is named log.spk

112

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

next command

Syntax:

next variables

variables = one or more variable names•

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the variable command. It assigns the next value to the variable
from the list of values defined for that variable by the variable command. Thus when that variable is subsequently
substituted for in an input script command, the new value is used.

See the variable command for info on how to define and use different kinds of variables in SPPARKS input
scripts. If a variable name is a single lower-case character from "a" to "z", it can be used in an input script
command as $a or $z. If it is multiple letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then all must be of the same variable style:
index, loop, universe, or uloop. An exception is that universe- and uloop-style variables can be mixed in the same
next command. Equal- or world-style variables cannot be incremented by a next command. All the variables
specified are incremented by one value from their respective lists.

When any of the variables in the next command has no more values, a flag is set that causes the input script to
skip the next jump command encountered. This enables a loop containing a next command to exit.

When the next command is used with index- or loop-style variables, the next value is assigned to the variable for
all processors. When the next command is used with universe- or uloop-style variables, the next value is assigned
to whichever processor partition executes the command first. All processors in the partition are assigned the same
value. Running SPPARKS on multiple partitions of processors via the "-partition" command-line switch is
described in this section of the manual. Universe- and uloop-style variables are incremented using the files
"tmp.spparks.variable" and "tmp.spparks.variable.lock" which you will see in your directory during such a
SPPARKS run.

Here is an example of running a series of simulations using the next command with an index-style variable. If this
input script is named in.polymer, 8 simulations would be run using data files from directories run1 thru run8.

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_data data.polymer
run 10000
shell cd ..
clear
next d
jump in.polymer

113

http://spparks.sandia.gov

If the variable "d" were of style universe, and the same in.polymer input script were run on 3 partitions of
processors, then the first 3 simulations would begin, one on each set of processors. Whichever partition finished
first, it would assign variable "d" the 4th value and run another simulation, and so forth until all 8 simulations
were finished.

Jump and next commands can also be nested to enable multi-level loops. For example, this script will run 15
simulations in a double loop.

variable i loop 3
variable j loop 5
clear
...
read_data data.polymer.ij
print Running simulation $i.$j
run 10000
next j
jump in.script
next i
jump in.script

Restrictions: none

Related commands:

jump, include, shell, variable,

Default: none

114

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

pair_coeff command

Syntax:

pair_coeff I J args ...

I,J = atom types (see asterisk form below)•
args = coefficients for one or more pairs of atom types•

Examples:

Examples:

pair_coeff 1 2 1.0 1.0 2.5
pair_coeff 2 * 1.0 1.0

Description:

Specify the pairwise force field coefficients for one or more pairs of atom types. The number and meaning of the
coefficients depends on the pair style.

I and J can be specified in one of two ways. Explicit numeric values can be used for each, as in the 1st example
above. I <= J is required. SPPARKS sets the coefficients for the symmetric J,I interaction to the same values.

A wild-card asterisk can be used in place of or in conjunction with the I,J arguments to set the coefficients for
multiple pairs of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom types,
then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types from 1 to
n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m
to n (inclusive). Note that only type pairs with I <= J are considered; if asterisks imply type pairs where J < I, they
are ignored.

Note that a pair_coeff command can override a previous setting for the same I,J pair. For example, these
commands set the coeffs for all I,J pairs, then overwrite the coeffs for just the I,J = 2,3 pair:

pair_coeff * * 1.0 1.0 2.5
pair_coeff 2 3 2.0 1.0 1.12

For many potentials, if coefficients for type pairs with I != J are not set explicitly by a pair_coeff command, the
values are inferred from the I,I and J,J settings by mixing rules. Details on the mixing as it pertains to individual
potentials are described on the doc page for the potential.

Here is the list of pair styles defined in SPPARKS. More will be added as new applications are developed. Click
on the style to display the formula it computes, arguments specified in the pair_style command, and coefficients
specified by the associated pair_coeff command:

pair_style lj/cut - cutoff Lennard-Jones potential•

Restrictions: none

Related commands:

115

http://spparks.sandia.gov

pair_style

Default: none

116

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

pair_style lj command

Syntax:

pair_style lj Ntypes cutoff

lj = style name of this pair style•
Ntypes = # of particle types•
cutoff = global cutoff for pairwise interactions (distance units)•

Examples:

pair_style lj 1 2.5
pair_style lj 3 3.0

Description:

The lj/cut style computes the standard 12/6 Lennard-Jones potential, given by

Rc is the cutoff.

The following coefficients must be defined for each pair of particle types via the pair_coeff command, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
cutoff (distance units)•

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The last coefficients is optional. If not specified, the global LJ cutoff specified in the pair_style command is used.

Mixing info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut pair
styles can be mixed. The style of mixing is geometric, which means that

epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)

Restrictions: none

Related commands: none

117

http://spparks.sandia.gov

Default: none

118

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

pair_style command

Syntax:

pair_style style args ...

style = one of the styles from the list below•
args = arguments used by a particular style•

Examples:

pair_style lj 1 2.5

Description:

Set the formula(s) SPPARKS uses to compute pairwise energy of interaction between sites or particles in an
off-lattice application.

The coefficients associated with a pair style are typically set for each pair of particle types, and are specified by
the pair_coeff command.

Here is the list of pair styles defined in SPPARKS. More will be added as new applications are developed. Click
on the style to display the formula it computes, arguments specified in the pair_style command, and coefficients
specified by the associated pair_coeff command:

pair_style lj/cut - cutoff Lennard-Jones potential•

Restrictions: none

Related commands:

pair_style

Default: none

119

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

pin command

Syntax:

pin fraction multiflag nthresh

fraction = fraction of sites (0 to 1) to convert to pinned sites•
multiflag = 0 for single sites, 1 for sites+neighbors•
nthresh = # of neighbor sites which must have different spins•

Examples:

pin 0.1 0 2

Description:

This command converts sites on a lattice to pinned sites by setting their spin value to Q+1, where Q is defined by
a Potts model. This command can only be used by the app_style potts/pin application. The size of the inclusions
and their location (anywhere or preferentially near grain boundaries) can be controlled by the multiflag and
nthresh parameters.

The way pinned sites are selected is as follows. A pinned site is chosen randomly. If the site is already a pinned
site, then another site is selected. If multiflag is set to 1, then if any of the site's neighbors are already a pinned
site, then another site is selected. If nthresh is a non-zero value, then the # of neighbor sites with spin values
different than the chosen site are counted. If the count is less than nthresh, then another site is selected.

Once the site is selected, just that site is converted to a pinned site if multiflag is 0. If multiflag is 1, then the site
plus all its neibhbors are converted to pinned sites.

This process continues until the desired fraction of changed sites is achieved. The entire process is done in a way
that should be independent of the number of processors used to run a particular simulation.

Note that if you pick a large volume fraction and/or a high value for nthresh it is possible that SPPARKS will
never find enough valid sites to convert to pinned sites. It will then loop endlessly.

Restrictions: none

This command can only be used as part of the app_style potts/pin applications.

Related commands:

app_style potts/pin

Default: none

120

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

print command

Syntax:

print string

string = text string to print. may contain variables•

Examples:

print "Done with equilibration"
print "The system temperature is now $t"

Description:

Print a text string to the screen and logfile. The text string must be a single argument, so it should be enclosed in
double quotes if it is more than one word. If variables are included in the string, they will be evaluated and their
current values printed.

If you want the print command to be executed multiple times (with changing variable values) then the print
command could appear in a section of the input script that is looped over (see the jump and next commands).

See the variable command for a description of equal style variables which are typically the most useful ones to
use with the print command. Equal-style variables can calculate formulas involving mathematical operations, or
references to other variables.

Restrictions: none

Related commands:

variable

Default: none

121

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

processors command

Syntax:

processors Px Py Pz

Px,Py,Pz = # of processors in each dimension of a 3d grid•

Examples:

processors 2 4 4

Description:

Specify how processors are mapped as a 3d logical grid to the global simulation box for spatial on-lattice or
off-lattice models.

When this command has not been specified, SPPARKS will choose Px, Py, Pz based on the dimensions of the
global simulation box so as to minimize the surface/volume ratio of each processor's sub-domain.

Since SPPARKS does not load-balance by changing the grid of 3d processors on-the-fly, this command should be
used to override the SPPARKS default if it is known to be sub-optimal for a particular problem.

The product of Px, Py, Pz must equal P, the total # of processors SPPARKS is running on. If multiple partitions
are being used then P is the number of processors in this partition; see this section for an explanation of the
-partition command-line switch.

If P is large and prime, a grid such as 1 x P x 1 will be required, which may incur extra communication costs.

Restrictions:

This command must be used before the simulation box is defined by a read_sites or create_box command.

Related commands: none

Default:

SPPARKS chooses Px, Py, Pz

122

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

read_sites command

Syntax:

read_sites file

file = name of data file to read in•

Examples:

read_sites data.potts
read_sites ../run7/data.potts.gz

Description:

Read in a data file containing information SPPARKS needs to setup an on-lattice or off-lattice application. The
file can be ASCII text or a gzipped text file (detected by a .gz suffix). This is one of 2 ways to specify event sites ;
see the create_sites command for another method.

A data file has a header and a body, as described below. The body of the file contains up to 3 sections: Sites,
Neighbors, Values. Sites defines the coordinates of event sites. Neighbors define the neighbors of each site (only
for on-lattice applications). Values assign per-site values to each site, which can also be done via the set
command.

The read_sites command can be used in one of 3 scenarios:

If a simulation box has not already been created and no event sites exist, then the data file defines the box size (in
the header), and it must define Sites. It must also define Neighbors for on-lattice applications. The Values section
is optional, since these can be set later via the set command.

If a simulation box has already been defined (by the "create_box" command or a previous read_sites command),
but no sites have previosly been defined, then the data file must define Sites. It must also define Neighbors for
on-lattice applications. The Values section is optional.

If a simulation box has already been defined, and sites have previosly been defined (by the "create_sites"
command or a previous read_sites command), then no Sites or Neighbors can be specfied, but the Values section
may be used. This is a means of restarting a simulation using per-site info written out by the dump command and
reformatted into a data file so it can be input by this command.

Note that the periodicity of the simulation box, as defined by the boundary command is not considered by this
command when defining sites or neighbors. It is up to you to insure sites are not duplicated on a periodic
boundary, or that a site's neighbor list does not include sites that are on the other side of the simulation box, across
a non-periodic boundary. This is in contrast to the create_sites command which accounts for both of these issues
when creating sites and neighbor lists.

The first line of the header of the data file is always skipped; it typically contains a description of the file. Then
lines are read one at a time. Lines can have a trailing comment starting with '#' that is ignored. If the line is blank
(only whitespace after comment is deleted), it is skipped. If the line contains a header keyword, the corresponding
value(s) is read from the line. If it doesn't contain a header keyword, the line begins the body of the file.

123

http://spparks.sandia.gov

The body of the file contains zero or more sections. The first line of a section has only a keyword. The next line is
skipped. The remaining lines of the section contain values. The number of lines depends on the section keyword
as described below. Zero or more blank lines can be used between sections. Sections can appear in any order, with
a few exceptions as noted below.

The formatting of individual lines in the data file (indentation, spacing between words and numbers) is not
important except that header and section keywords (e.g. dimension, xlo xhi, Sites, Values) must be capitalized as
shown and can't have extra white space between their words - e.g. two spaces or a tab between "xlo and "xhi" is
not valid.

These are the recognized header keywords. Header lines can come in any order. The value(s) are read from the
beginning of the line. Thus the keyword sites should be in a line like "1000 sites"; the keyword ylo yhi should be
in a line like "-10.0 10.0 ylo yhi". All these settings have a default value of 0, except the lo/hi box size defaults
which are -0.5 and 0.5. A line need only appear if the value is different than the default. If the keyword values
have already been defined (e.g. box sizes for a previously created simulation box), then the values in the data file
must match.

dimension = dimension of system = 1,2,3•
sites = number of sites•
max neighbors = max # of neighbors of any site•
xlo xhi = simulation box boundaries in x dimension•
ylo yhi = simulation box boundaries in y dimension•
zlo zhi = simulation box boundaries in z dimension•

The max neighbors setting is only needed if the file contains a Neighbors section, which is only used for on-lattice
applications.

The simulation box size is determined by the lo/hi settings. For 2d simulations, the zlo zhi values should be set to
bound the z coords for atoms that appear in the file; the default of -0.5 0.5 is valid if all z coords are 0.0. The same
rules hold for ylo and yhi for 1d simulations.

These are the possible section keywords for the body of the file: Sites, Neighbors, Values.

Each section is listed below. The format of each section is described including the number of lines it must contain
and rules (if any) for where it can appear in the data file.

Any individual line in the various sections can have a trailing comment starting with "#" for annotation purposes.
E.g. in the Sites section:

10 10.0 5.0 6.0 # impuity site

Sites section:

one line per site•
line syntax: ID x y z

ID = global site ID (1-N)
x y z = coordinates of site

•

example:

101 7.0 0.0 3.0

•

124

There must be N lines in this section where N = number of sites and is defined by the sites keyword in the header
section of the file. The lines can appear in any order.

Neighbors section:

one line per site•
line syntax: ID n1 n2 n3 ...

ID = global site ID (1-N)
n1 n2 n3 ... = IDs of neighbor sites

•

example:

101 7 32 15 1004 ...

•

There must be N lines in this section where N = number of sites and is defined by the sites keyword in the header
section of the file. The lines can appear in any order.

The number of neighbors can vary from site to site, but there can be no more than max neighbors for any one site.
The neighbors of an individual site can be listed in any order.

Values section:

one line per site•
line syntax: ID i1 i2 ... iN d1 d2 ... dN

ID = global site ID (1-N)
i1,i2,...iN = integer values for the site
d1,d2,...dN = floating point values for the site

•

example:

101 1 3 4.0

•

There must be N lines in this section where N = number of sites and is defined by the sites keyword in the header
section of the file. The lines can appear in any order.

The number of values per site that should be listed depends on the application which defines the number of
integer and floating-point values per site. These are listed in order, with the integer values first, followed by the
floating-point values.

Restrictions:

To write gzipped dump files, you must compile SPPARKS with the -DSPPARKS_GZIP option - see the Making
SPPARKS section of the documentation.

Related commands:

create_box, create_sites, set

Default: none

125

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

region command

Syntax:

region ID style args keyword value ...

ID = user-assigned name for the region•
style = block or cylinder or sphere or union or intersect

block args = xlo xhi ylo yhi zlo zhi
 xlo,xhi,ylo,yhi,zlo,zhi = bounds of block in all dimensions (distance units)

cylinder args = dim c1 c2 radius lo hi
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 radius = cylinder radius (distance units)
 lo,hi = bounds of cylinder in dim (distance units)

sphere args = x y z radius
 x,y,z = center of sphere (distance units)
 radius = radius of sphere (distance units)

union args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to join together

intersect args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to intersect

•

zero or more keyword/value pairs may be appended•
keyword = side

side value = in or out
in = the region is inside the specified geometry
out = the region is outside the specified geometry

•

Examples:

region 1 block -3.0 5.0 INF 10.0 INF INF
region 2 sphere 0.0 0.0 0.0 5 side out
region void cylinder y 2 3 5 -5.0 EDGE
region outside union 4 side1 side2 side3 side4

Description:

This command defines a geometric region of space. Various other commands use regions. For example, the region
can be filled with sites via the create_sites command.

The distance units used to define the region are setup by the lattice command which must be used before any
regions are defined. The lattice command defines a lattice spacing and regions are defined in terms of this length
scale. For example, if the lattice spacing is 3.0 and the region sphere radius is 2.5, then the size of the sphere is
2.5*3.0 = 7.5.

Commands which use regions typically test whether a lattice site is contained in the region or not. For this
purpose, coordinates exactly on the region boundary are considered to be interior to the region. This means, for
example, for a spherical region, a lattice site on the sphere surface would be part of the region if the sphere were
defined with the side in keyword, but would not be part of the region if it were defined using the side out
keyword. See more details on the side keyword below.

126

http://spparks.sandia.gov

The lo/hi values for the block or cylinder styles can be specified as EDGE or INF. EDGE means they extend all
the way to the global simulation box boundary. Note that this is the current box boundary; if the box changes size
during a simulation, the region does not. INF means a large negative or positive number (1.0e20), so it should
encompass the simulation box even if it changes size. If a region is defined before the simulation box has been
created (via create_box or read_sites commands), then an EDGE or INF parameter cannot be used.

IMPORTANT NOTE: Regions in SPPARKS are always 3d geometric objects, regardless of whether the
dimension of the lattice is 1d or 2d or 3d. Thus when using regions in a 2d simulation, for exapmle, you should be
careful to define the region so that its intersection with the 2d x-y plane of the simulation has the 2d geometric
extent you want. Also note that for 2d simulations, SPPARKS expects lattice sites to lie in the z=0 plane, and
similarly for 1d (y = z = 0), so the regions you define as input to the create_box command should reflect that.

For style cylinder, the c1,c2 params are coordinates in the 2 other dimensions besides the cylinder axis dimension.
For dim = x, c1/c2 = y/z; for dim = y, c1/c2 = x/z; for dim = z, c1/c2 = x/y. Thus the third example above
specifies a cylinder with its axis in the y-direction located at x = 2.0 and z = 3.0, with a radius of 5.0, and
extending in the y-direction from -5.0 to the upper box boundary.

The union style creates a region consisting of the volume of all the listed regions combined. The intersect style
creates a region consisting of the volume that is common to all the listed regions.

The side keyword determines whether the region is considered to be inside or outside of the specified geometry.
Using this keyword in conjunction with union and intersect regions, complex geometries can be built up. For
example, if the interior of two spheres were each defined as regions, and a union style with side = out was
constructed listing the region-IDs of the 2 spheres, the resulting region would be all the volume in the simulation
box that was outside both of the spheres.

Restrictions: none

Related commands:

lattice, create_sites

Default:

The option defaults are side = in.

127

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

reset_time command

Syntax:

reset_time time

time = new time•

Examples:

reset_time 0.0
reset_time 100.0

Description:

Set the current time to the specified value. This can be useful if a preliminary run was performed and you wish to
reset the time before performing a subsequent run.

Restrictions: none

Related commands: none

Default: none

128

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

run command

Syntax:

run delta keyword values ...

delta = run simulation for this amount of time (seconds)•
zero or more keyword/value pairs may be appended•
keyword = upto or pre or post

upto value = none
pre value = no or yes
post value = no or yes

•

Examples:

run 100.0
run 10000.0 upto
run 1000 pre no post yes

Description:

This command runs a Monte Carlo application for the specified number of seconds of simulation time. If multiple
run commands are used, the simulation is continued, possibly with new settings which were specified between the
successive run commands.

The application defines Monte Carlo events and probabilities which determine the amount of physical time
associated with each event.

A value of delta = 0.0 is acceptable; only the status of the system is computed and printed without making any
Monte Carlo moves.

The upto keyword means to perform a run starting at the current time up to the specified time. E.g. if the current
time is 10.0 and "run 100.0 upto" is used, then an additional 90.0 seconds will be run. This can be useful for very
long runs on a machine that allocates chunks of time and terminate your job when time is exceeded. If you need to
restart your script multiple times (reading in the last restart file), you can keep restarting your script with the same
run command until the simulation finally completes.

The pre and post keywords can be used to streamline the setup, clean-up, and associated output to the screen that
happens before and after a run. This can be useful if you wish to do many short runs in succession (e.g.
SPPARKS is being called as a library which is doing other computations between successive short SPPARKS
runs).

By default (pre and post = yes), SPPARKS initializes data structures and computes propensities before every run.
After every run it gathers and prints timings statistics. If a run is just a continuation of a previous run, the data
structure initialization is not necessary. So if pre is specified as no then the initialization is skipped. Propensities
are still re-computed since commands between runs or a driver program may have changed the system, e.g. by
altering lattice values. Note that if pre is set to no for the very 1st run SPPAKRS performs, then it is overridden,
since the initialization must be done.

If post is specified as no, the full timing summary is skipped; only a one-line summary timing is printed.

129

http://spparks.sandia.gov

Restrictions: none

Related commands: none

Default:

The option defaults are pre = yes and post = yes.

130

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

sector command

Syntax:

sector flag keyword value ...

flag = yes or no or N where N = 2,4,8•
zero or more keyword/value pairs may be appended•
keyword = tstop or nstop

tstop value = dt
 dt = elapsed time for events to perform within sector (seconds)

nstop value = N
 N = average number of events per site to perform within sector

•

Examples:

sector no
sector yes
sector 4
sector yes nstop 0.5
sector yes tstop 5.0

Description:

This command partitions the portion of the simulation domain owned by each processor into sectors or
sub-domains. It can only be used for on-lattice applications. Typically, it is used in a parallel simulation, to enable
parallelism, but it can also be used on a single processor.

If sectoring is enabled via the yes setting, then for 1d lattices, each processor's sub-domain is partioned into 2
halves, for 2d lattices, each processor's sub-domain is partitioned into 4 quadrants, and for 3d lattices it is
partitioned into 8 octants. If the N setting is used instead, then the number of sectors can be specified directly.
This may be useful in some models to reduce communication. A 3d lattice can use 2 (x only) or 4 sectors (x and
y), instead of the default 8 (x and y and z). A 2d lattice can use 2 sectors (x only), instead of the default 4 (x and
y). Note that if no sectors are used in a dimension, then there must be only one processor assigned to that
dimension of the simulation box (see the app_style procs command). For example, if "sector 2" is used for a 2d
lattice, then the processor layout must be Px1, where P is the total number of processors.

If sectors are turned on, then a kinetic Monte Carlo (KMC) or rejection KMC (rKMC) algorithm is performed in
the following manner. Events or sites are selected within the first sector on each processor, via a solver or
sweeping method. Communication is then done between processors to update sector boundaries. Then all
proecessors move to the next sector, and the process is repeated. Thus a single sweep over the entire lattice is
performed in 2 (or 4 or 8) stages for 1d (of 2d or 3d) lattices, as sectors are processed one at a time, followed by
the appropriate communication. This procedure insure events occurring on one processor do not conflict with
events performed by other processors.

The optional keywords determine how much time is spent on each sector (i.e. how many events are performed)
before moving to the next sector. See the discussion below for what they mean when sectoring is set to no.

Note that using sectors turns an exact KMC or rKMC algorithm into an approximate one, in the spirit of Amar.
This is because events are occuring within a sector while the state of the system on the boundary of the sector is
held frozen. If the time-per-sector is too large, this will require less communication but will induce incorrect

131

http://spparks.sandia.gov

dynamics at the sector boundaries. Conversely, if the time-per-sector is too small, the simulation will perform few
events per sector and spend too much time communicating.

If the tstop keyword is set to a value > 0.0, it sets the time per sector to the specified value. For a KMC algorithm,
events are performed until this time threshhold is reached. The final event, whose time >= tstop, is not accepted.
For a rKMC algorithm, the time per attempted event = dt_sweep is defined by the application, and the number of
attempted events in each sector is set to nsite*int(tstop/dt_sweep). Because of integer truncation, the simulation
time increment in rKMC may differ slightly from the specified tstop.

If the nstop keyword is set to a value > 0.0, it sets the average number of events (or attempts) per site. For
example, an nstop value of 2.0 means attempt 2 events per site for a rKMC algorithm. For a KMC algorithm, this
is converted into a time using pmax = the maximum propensity per site. At the start of each visit to a sector, the
per-site propensity for the sector = psect, is computed. Psect is the total propensity of the sector divided by the
total number of active sites, which are those with propensity greater than zero. After all sectors have been visited,
pmax is set to the largest value of psect across all processors and sectors, and the threshold time for the next visit
to each sector is set to nstop/pmax.

In the KMC case, this means that if the total propensity of the system decreases as the simulation proceeds (e.g.
grain growth occurs), then the effective time per sweep will increase in an adaptive way. Said another way, the
number of events per sweep will remain roughly constant, as the time per event increases. In the rKMC case, the
time per attempt is constant due to the use of a null-bin, so there is no adaptivity.

If neither the tstop or nstop keywords are specified, a default value of nstop = 1.0 is used, meaning one event per
site is performed or attempted in the KMC or rKMC algorithm in each sector. This should give good behavior in
many applications, meaning high accuracy is achieved with good parallel performance due to a modest amount of
communication being performed.

Note that it makes no sense to specify both tstop and nstop since they define the time-per-sector in different ways.
When tstop is specified, it sets nstop to 0.0. Likewise when nstop is specified, it sets tstop to 0.0. Thus if both are
used, the last setting takes precedence.

If sectors are turned off via the no setting, then the nstop or tstop settings still have an effect for rKMC
simulations where the sweep style is set to color. They determine how many times the sites associated with each
color are looped over before moving to the next color. Normally, this should just be 1, which is the nstop default,
but this can be changed if desired.

Restrictions:

This command can only be used as part of on-lattice applications as specified by the app_style command.

Related commands:

app_style, solve_style, sweep

Default:

The default for sectoring is no and the option defaults are nstop = 1.0 and tstop = 0.0.

(Amar) Shin and Amar, Phys Rev B, 71, 125432-1-125432-13 (2005).

132

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

seed command

Syntax:

seed Nvalue

Nvalue = seed for a random number generator (positive integer)•

Examples:

seed 5838959

Description:

This command sets the random number seed for a master random number generator which is used by SPPARKS
to initialize auxiliary random number generators which in turn are used for all operations in the code requiring
random numbers. Thus this command is needed to perform any simulation with SPPARKS.

Restrictions: none

Related commands: none

Default: none

133

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

set command

Syntax:

set label style args keyword values ...

label = site or iN or dN or x or y or z or xyz•
style = value or range or displace

value arg = nvalue
 nvalue = value to set sites to

range args = lo hi
 lo,hi = range of values to set sites to

unique args = none
displace arg = delta

 delta = max distance to displace the site

•

zero or more keyword/value pairs may be appended•
keyword = fraction or region or loop or if

fraction value = frac
 frac = number > 0 and <= 1.0

region args = region-ID
 region-ID = ID of region that sites must be part of

loop arg = all or local
 all = loop over all sites
 local = loop over only sites I own

if args = label2 op nvalue2
 label2 = id or iN or dN or x or y or z
 op = "" or "<=" or "=" or "!="
 nvalue2 = value to compare site value to

•

Examples:

set i1 value 2 fraction 0.5
set d1 range 1.0 2.0 loop local
set xyz displace 0.2
set i1 range 1 50 if x <20 if i2 = 3

Description:

Reset a per-site value for one or more sites. Each on-lattice or off-lattice application defines what per-site values
are stored with each site in its model. When sites are created by the create_sites or read_sites commands, their
per-site values may be set to zero or to values specified by those commands. This command enables the values to
be changed, either before the first run, or between runs.

The label determines which per-site quantity is set. iN and dN mean the Nth integer or floating-point quantity,
with 1 <= N <= Nmax. Nmax is defined by the application. If label is specified as site it is the same as i1. For
off-lattice applications, the x or y or z or xyz coordinates of each site can be adjusted.

For label iN or dN or site, the styles value or range can be used.

For style value, the per-site quantity is set to the specified nvalue, which should be either an integer or
floating-point numeric value, depending on what kind of per-site quantity is being set.

134

http://spparks.sandia.gov

For style range, the per-site quantity is set to a random value between lo and hi (inclusive). Both lo and hi should
be either integer or floating-point numeric values, depending on what kind of per-site quantity is being set.

For style unique, the per-site quantity is set to the site ID, which is effectively a value unique to each site. This
can be useful, for example, for setting the initial spin of each site to a unique value.

NOTE: The displace style is not yet implemented but will be soon. The following text explains how it will work
for off-lattice applications.

For label x or y or z or xyz, the style displace must be used. For x or y or z, the corresponding coordinate of each
site is displaced by a random distance between -delta and delta. For xyz the site is displaced to a new random
point within a sphere of radius delta surrounding the site (or a circle for 2d models, or a line segement for 1d
models).

The optional keywords enables selection of sites whose label quantity will be reset to a new value. Note that these
optional keywords can be used in various combinations, and the if keyword can be used multiple times, to select
desired sites.

The keyword fraction means that only a fraction of the sites will be reset, where 0 < frac <= 1.0. For each site a
random number R is generated and the reset only occurs if R < frac.

The keyword region means that only sites in the specified region will be reset. Note that a defined region can be a
union or intersection of several regions and can be either inside or outside a geometric boundary; see the region
command for details.

The keyword loop determines how sites in the simulation box are looped over when their per-site quantity is reset.
In general, each processor will own some subset Nlocal of the total number of sites Nglobal in the simulation box.
The entire set of sites are assumed to have IDs from 1 to Nglobal. For loop all, each processor performs a loop
from 1 to Nglobal and generates the new value for that site. If it owns the site, then it resets its value. This means
that the changes to per-site values will be the same, independent of which processor owns which site. For loop
local, each processor loops over only its sites from 1 to Nlocal. This may be faster, but if random numbers are
used to determine new per-site values, it will give different answers depending on the the number of processors
used.

The keyword if sets a condition that must be met in order for the per-site quantity to be reset. The per-site quantity
specified by label2 is compared to the numeric nvalue2 and if the condition is not met, then the site is skipped.

Restrictions: none

Related commands:

create_sites, read_sites

Default:

The default values for the optional keywords is fraction 1.0 and loop all. No region is defined by default nor are
any if-tests.

135

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

shell command

Syntax:

shell style args

style = cd or mkdir or mv or rm or rmdir

cd arg = dir
 dir = directory to change to

mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create

mv args = old new
 old = old filename
 new = new filename

rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete

rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete

•

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.lammps hold/log.1
shell rm TMP/file1 TMP/file2

Description:

Execute a shell command. Only a few simple file-based shell commands are supported, in Unix-style syntax. With
the exception of cd, all commands are executed by only a single processor, so that files/directories are not being
manipulated by multiple processors.

The cd style executes the Unix "cd" command to change the working directory. All subsequent SPPARKS
commands that read/write files will use the new directory. All processors execute this command.

The mkdir style executes the Unix "mkdir" command to create one or more directories.

The mv style executes the Unix "mv" command to rename a file and/or move it to a new directory.

The rm style executes the Unix "rm" command to remove one or more files.

The rmdir style executes the Unix "rmdir" command to remove one or more directories. A directory must be
empty to be successfully removed.

Restrictions:

SPPARKS does not detect errors or print warnings when any of these Unix commands execute. E.g. if the
specified directory does not exist, executing the cd command will silently not do anything.

Related commands: none

136

http://spparks.sandia.gov

Default: none

137

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

138

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

139

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

solve_style command

Syntax:

solve_style style args keyword value ...

style = linear or tree or group or none

linear arg = none
tree arg = none
group args = hi lo

 hi,lo = range of allowed probabilities
none arg = none

•

zero or more keyword/value pairs may be appended•
keyword = ngroup

ngroup value = N
 N = # of groups to use

•

Examples:

solve_style linear
solve_style tree
solve_style group 1.0 1.0e-6
solve_style group 100.0 1.0 ngroup 10

Description:

Choose a kinetic Monte Carlo (KMC) solver to use in your application. If no sweeper is used then a solver is
required.

A KMC solver picks events for your application to perform from a list of events and their associated probabilities.
It does this using the standard Gillespie or BKL algorithm which also computes a timestep during which the
chosen event occus. The only difference between the various solver styles is the algorithm they use to select
events which affects their speed and scalability as a function of the number of events they choose from. The
linear solver may be suitable for simulations with few events; the tree or group solver should be used for larger
simulations.

The linear style chooses an event by scanning the list of events in a linear fashion. Hence the cost to pick an event
scales as O(N), where N is the number of events.

The tree style chooses an event by creating a binary tree of probabilities and their sums, as in the Gibson/Bruck
implementation of the Gillespie direct method algorithm. Its cost to pick an event scales as O(logN).

The group style chooses an event using the composition and rejection (CR) algorithm described originally in
Devroye and discussed in Slepoy. Its cost to pick an event scales as O(1) as it is a constant time algorithm. It
requires that you bound the hi and lo probabilities for any event that will be considered with the solver. Note that
for on-lattice applications this is typically the total probability of all events associated with a site. The value of lo
must be > 0.0 and lo cannot be >= hi. For efficiency purposes it is good to choose bounds that are reasonably
tight.

140

http://spparks.sandia.gov

By default, the group style will create groups whose boundaries cascade downward in powers of 2 from hi to lo.
I.e. the first group is from hi/2 to hi, the second group is from hi/4 to hi/2, and continuing until lo is reached. Note
that for hi/lo = 1.0e6, there would thus be about 20 groups.

If the ngroup keyword is used, then it specifies the number of groups to use between lo and hi and they will be
equal in extent. E.g. for ngroup = 3, the first group is from lo to lo + (hi-lo)/3, the second group is from lo +
2*(hi-lo)/3, and the third group is from lo + 2*(hi-lo)/3 to hi.

IMPORTANT NOTE: For the group style, if an event is generated that has a probability = 0.0 (e.g. a site has no
possible event), that is not a violation of the lo bound. However if an event is generated with a non-zero
probability and the probability is less than lo or greater than hi, then the probability is reset by the solver to the lo
or hi bound. If this occurs during a run, SPPARKS will print out a warning message (either before the run, or at
the end of the script), since it indicates events have been selected using (slightly) different probabilities than the
model generated. This allows you to set a different lo or hi bound and re-run the simulation.

The none style deletes any KMC solver previously defined. This may be useful for transitioning from a KMC
solver in one run to a sweeping method with a rejection-KMC solver in a subsequent run.

Restrictions:

The ngroup keyword can only be used with style group.

Related commands:

app_style, sweep_style

Default: none

(Gillespie) Gillespie, J Comp Phys, 22, 403-434 (1976); Gillespie, J Phys Chem, 81, 2340-2361 (1977).

(BKL) Bortz, Kalos, Lebowitz, J Comp Phys, 17, 10 (1975).

(Gibson) Gibson and Bruck, J Phys Chem, 104, 1876 (2000).

(Devroye) Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York (1986).

(Slepoy) Slepoy, Thompson, Plimpton, J Chem Phys, 128, 205101 (2008).

141

http://cg.scs.carleton.ca/~luc/rnbookindex.html

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

142

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

stats command

Syntax:

stats delta keyword values ...

delta = time increment between statistical output (seconds)•
zero or more keyword/value pairs may be appended•
keyword = delay or logfreq or loglinfreq

delay value = tdelay
 tdelay = delay stats until at least this time (seconds)

logfreq or loglinfreq values = N factor
 N = number of repetitions per interval
 factor = scale factor between intervals

•

Examples:

stats 0.1
stats 0.1 delta 0.5
stats 1.0 loglinfreq 7 10.0

Description:

Print statistics to the screen and log file every so many seconds during a simulation. A value of 0.0 for delta
means only print stats at the beginning and end of the run, in which case no optional keywords can be used.

The quantities printed are elapsed CPU time followed by those provided by the application, followed by those
provided by any diagnostics you have defined.

Typically the application reports only the number of events or sweeps executed, followed by the simulation time,
but other application-specific quantities may also be reported. Quantities such as the total energy of the system
can be included in the output by creating diagnostics via the diag_style command.

The delay keyword will suppress output until tdelay time has elapsed.

Using the logfreq or loglinfreq keyword will produce statistical output at progressively larger intervals during the
course of a simulation. There will be N outputs per interval where the size of the interval is initially delta and then
scales up by factor each time. With loglinfreq, output times increase arithmetically within an interval; with
logfreq the output times increase geometrically.

For example, this command

stats 0.1 loglinfreq 7 10.0

will produce output at times:

t = 0, 0.1, 0.2, ..., 0.7, 1, 2,, 7, 10, 20,

This command

stats 0.1 logfreq 1 2.0

143

http://spparks.sandia.gov

will produce output at times:

t = 0, 0.1, 0.2, 0.4, 0.8, 1.6, ...

This command

stats 1.0 logfreq 10 10.0

will produce output at times:

t = 0, 1.0, 1.26, 1.58, 2.00, 2.51, 3.16, 3.98, 5.01, 6.31, 7.94, 10.0, ...

Note that in the above examples the times are the earliest times that output will be produced. In practice, because
time is incremented in discrete jumps, output will be produced at times somewhat later than these times.

If N is specified as 0, then this will turn off logarithmic output, and revert to regular output every delta seconds.

Restrictions:

See the doc pages for quantities provided by particular app_style and diag_style commands for further details.

Related commands:

dump, diag_style

Default:

The default stats delta is 0.0. The keyword defaults are delay = 0.0 and no logarithmic output.

144

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

sweep command

Syntax:

sweep style keyword value ...

style = random or raster or color or color/strict or none•
zero or more keyword/value pairs may be appended•
keyword = mask

mask value = yes or no
 yes/no = mask out sites than cannot change

•

Examples:

sweep random
sweep raster mask yes ...

Description:

Use a rejection kinetic Monte Carlo (rKMC) algorithm for an on-lattice application. If rKMC is not used then a
kinetic Monte Carlo (KMC) algorithm must be used as defined by the solve_style command.

The rKMC algorithm in SPPARKS selects sites on a lattice in an order determined by this command and requests
that the application perform events. The application defines the geometry and connectivity of the lattice, what the
possible events are, and defines their rates and acceptance/rejection criteria.

The ordering of selected sites is also affected by the sector command, which partitions each processor's portion of
the simulation domain into sectors which are quadrants (2d) or octants (3d). In this case, the ordering described
below is within each sector. Sectors are looped over one at a time, interleaved by communication of lattice values
inbetween.

For the random style, sites are chosen randomly, one at a time.

For the raster style, a sweep of the lattice is done, as a loop over all sites in a pre-determined order, e.g. a triple
loop over i,j,k for a 3d cubic lattice.

For the color style, lattice sites are partitioned into sub-groups or colors which are non-interacting in the sense
that events on two sites of the same color can be perfored simultaneously without conflict. This enables
parallelism since events on all sites of the same color can be attempted simultaneously. Similar to sectors, the
colors are looped over, interleaved by communication of lattice values inbetween.

The color/strict style is the same as the color style except that random numbers are generated in a way that is
independent of the processor which generates them. Thus SPPARKS should produce the same answer,
independent of how many processors are used. This can be useful in debugging an application.

If the application supports it, the mask keyword can be set to yes to skip sites which cannot perform an event due
to the current value of the site and its neighbors. Enabling masking should not change the answer given by a
simulation (in a statistical sense); it only offers a computational speed-up. For example, sites in the interior of
grains in a Potts grain-growth model may have no potential of flipping their value. Masking can only be set to yes
if the temperature is set to 0.0, since otherwise there is a finite probability of any site performing an event.

145

http://spparks.sandia.gov

The none style deletes any rKMC sweeping algorithm previously defined. This may be useful for transitioning
from a rKMC solver in one run to a KMC solver in a subsequent run.

Restrictions:

This command can only be used as part of on-lattice applications as specified by the app_style command.

Not all lattice styles and applications support the color and color/strict styles. Not all applications support the
mask option.

Related commands:

app_style, solve_style, sector

Default:

The option defaults are mask = no.

146

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

temperature command

Syntax:

temperature T

T = value of temperature for the Monte Carlo simulation (energy units)•

Examples:

temperature 2.0

Description:

This command sets the temperature as used in various applications. The typical usage would be as part of a
Boltzmann factor that alters the propabilities of event acceptance and rejection.

The units of the specfied temperature should be consistent with how the application defines energy. E.g. if used in
a Boltzmann factor where a kT factor scales the energy of a Hamiltonian defined by the application, then this
command is really defining kT and the specified value should have the units of energy as computed by the
Hamiltonian.

Restrictions: none

This command can only be used as part of applications that allow for a temperature to be specified. See the doc
pages for individual applications defined by the app_style command for further details.

Related commands: none

Default:

The default temperature is 0.0.

147

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

undump command

Syntax:

undump dump-ID

dump-ID = ID of previously defined dump•

Examples:

undump mine
undump 2

Description:

Turn off a previously defined dump command so that it is no longer active. This closes the file associated with the
dump.

Restrictions: none

Related commands:

dump

Default: none

148

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

update_only command

Syntax:

update_only keyword

keyword = yes or no

Examples:

update_only yes
update_only no

Description:

On-lattice applications have the ability to run a separate update command that updates the site array values
separate to those changes which occur during a KMC or rKMC iteration. That update can run in conduction with
a KMC or rKMC iteration or with this command one can run the update routine while skipping any normal KMC
or rKMC iterations. One can run the user_update by itself by running "update_only yes" or run it in conjunction
with the KMC or rKMC iterations by running "update_only no". Currently there are no applications which use
this command but it has been made available for custom built applications.

Restrictions:

This command must be run with an app_style that supports it.

Related commands:

app_style

Default:

The default value is set to "no" so that the user_update runs in conjunction with the KMC or rKMC iterations.

149

http://spparks.sandia.gov

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

variable command

Syntax:

variable name style args ...

name = name of variable to define•
style = index or loop or world or universe or uloop or equal or atom

index args = one or more strings
loop args = N = integer size of loop
world args = one string for each partition of processors
universe args = one or more strings
uloop args = N = integer size of loop
equal args = one formula containing numbers, math operations, variable references

 numbers = 0.0, 100, -5.4, 2.8e-4, etc
 constants = PI
 keywords = time, nglobal
 math operations = (), -x, x+y, x-y, x*y, x/y, x^y,
 sqrt(x), exp(x), ln(x), log(x),
 sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),
 ceil(x), floor(x), round(x)
 other variables = v_abc, v_n

•

Examples:

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable MyValue equal 5.0*exp(v_energy/(v_boltz*v_Temp))
variable beta equal v_temp/3.0
variable temp world 300.0 310.0 320.0 ${Tfinal}
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15

Description:

This command assigns one or more strings to a variable name for evaluation later in the input script or during a
simulation.

Variables can be used in several ways in SPPARKS. A variable can be referenced elsewhere in an input script to
become part of a new input command. For variable styles that store multiple strings, the next command can be
used to increment which string is assigned to the variable. Variables of style equal can be evaluated to produce a
single numeric value which can be output directly via the print command.

In the discussion that follows, the "name" of the variable is the arbitrary string that is the 1st argument in the
variable command. This name can only contain alphanumeric characters and underscores. The "string" is one or
more of the subsequent arguments. The "string" can be simple text as in the 1st example above, it can contain
other variables as in the 2nd example, or it can be a formula as in the 3rd example. The "value" is the numeric
quantity resulting from evaluation of the string. Note that the same string can generate different values when it is
evaluated at different times during a simulation.

IMPORTANT NOTE: When a variable command is encountered in the input script and the variable name has
already been specified, the command is ignored. This means variables can NOT be re-defined in an input script
(with 2 exceptions, read further). This is to allow an input script to be processed multiple times without resetting

150

http://spparks.sandia.gov

the variables; see the jump or include commands. It also means that using the command-line switch -var will
override a corresponding variable setting in the input script.

There are two exceptions to this rule. First, variables of style equal ARE redefined each time the command is
encountered. This allows them to be reset, when their formulas contain a substitution for another variable, e.g. $x.
This can be useful in a loop. This also means an equal-style variable will re-define a command-line switch -var
setting, so an index-style variable should be used for such settings instead, as in bench/in.lj.

Second, as described below, if a variable is iterated on to the end of its list of strings via the next command, it is
removed from the list of active variables, and is thus available to be re-defined in a subsequent variable command.

This section of the manual explains how occurrences of a variable name in an input script line are replaced by the
variable's string. The variable name can be referenced as $x if the name "x" is a single character, or as
${LoopVar} if the name "LoopVar" is one or more characters.

As described below, for variable styles index, loop, universe, and uloop, which string is assigned to a variable can
be incremented via the next command. When there are no more strings to assign, the variable is exhausted and a
flag is set that causes the next jump command encountered in the input script to be skipped. This enables the
construction of simple loops in the input script that are iterated over and then exited from.

For the index style, one or more strings are specified. Initially, the 1st string is assigned to the variable. Each time
a next command is used with the variable name, the next string is assigned. All processors assign the same string
to the variable.

Index style variables with a single string value can also be set by using the command-line switch -var; see this
section for details.

The loop style is identical to the index style except that the strings are the integers from 1 to N. This allows
generation of a long list of runs (e.g. 1000) without having to list N strings in the input script. Initially, the string
"1" is assigned to the variable. Each time a next command is used with the variable name, the next string ("2",
"3", etc) is assigned. All processors assign the same string to the variable.

For the world style, one or more strings are specified. There must be one string for each processor partition or
"world". See this section of the manual for information on running SPPARKS with multiple partitions via the
"-partition" command-line switch. This variable command assigns one string to each world. All processors in the
world are assigned the same string. The next command cannot be used with equal style variables, since there is
only one value per world. This style of variable is useful when you wish to run different simulations on different
partitions.

For the universe style, one or more strings are specified. There must be at least as many strings as there are
processor partitions or "worlds". See this page for information on running SPPARKS with multiple partitions via
the "-partition" command-line switch. This variable command initially assigns one string to each world. When a
next command is encountered using this variable, the first processor partition to encounter it, is assigned the next
available string. This continues until all the variable strings are consumed. Thus, this command can be used to run
50 simulations on 8 processor partitions. The simulations will be run one after the other on whatever partition
becomes available, until they are all finished. Universe style variables are incremented using the files
"tmp.spparks.variable" and "tmp.spparks.variable.lock" which you will see in your directory during such a
SPPARKS run.

The uloop style is identical to the universe style except that the strings are the integers from 1 to N. This allows
generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

151

For the equal style, a single string is specified which represents a formula that will be evaluated afresh each time
the variable is used. If you want spaces in the string, enclose it in double quotes so the parser will treat it as a
single argument. For equal style variables the formula computes a scalar quantity, which becomes the value of the
variable whenever it is evaluated.

Note that equal variables can produce different values at different stages of the input script or at different times
during a run.

The next command cannot be used with equal style variables, since there is only one string.

The formula for an equal variable can contain a variety of quantities. The syntax for each kind of quantity is
simple, but multiple quantities can be nested and combined in various ways to build up formulas of arbitrary
complexity. For example, this is a valid (though strange) variable formula:

variable x equal "2.0 + v_MyTemp / pow(v_Volume,1/3)"

Specifically, an formula can contain numbers, math operations, and references to other variables.

Number 0.2, 100, 1.0e20, -15.4, etc
Constants PI
Keywords time, nglobal
Math
operations

(), -x, x+y, x-y, x*y, x/y, x^y, sqrt(x), exp(x), ln(x), log(x), sin(x), cos(x), tan(x), asin(x), acos(x),
atan(x), ceil(x), floor(x), round(x)

Other
variables v_abc, v_n

The keywords currently allowed in a formula are time and nglobal. Time is the current simulation time. Nglobal is
the number of sites in the model.

Math operations are written in the usual way, where the "x" and "y" in the examples above can be another section
of the formula. Operators are evaluated left to right and have the usual precedence: unary minus before
exponentiation ("^"), exponentiation before multiplication and division, and multiplication and division before
addition and subtraction. Parenthesis can be used to group one or more portions of a formula and enforce a
desired order of operations. Additional math operations can be specified as keywords followed by a parenthesized
argument, e.g. sqrt(v_ke). Note that ln() is the natural log; log() is the base 10 log. The ceil(), floor(), and round()
operations are those in the C math library. Ceil() is the smallest integer not less than its argument. Floor() if the
largest integer not greater than its argument. Round() is the nearest integer to its argument.

The current values of other variables can be accessed by prepending a "v_" to the variable name. This will cause
that variable to be evaluated.

IMPORTANT NOTE: If you define variables in circular manner like this:

variable a equal v_b
variable b equal v_a
print $a

then SPPARKS will run for a while when the print statement is invoked!

Another way to reference a variable in a formula is using the $x form instead of v_x. There is a subtle difference
between the two references that has to do with when the evaluation of the included variable is done.

152

Using a $x, the value of the include variable is substituted for immediately when the line is read from the input
script, just as it would be in other input script command. This could be the desired behavior if a static value is
desired. Or it could be the desired behavior for an equal-style variable if the variable command appears in a loop
(see the jump and next commands), since the substitution will be performed anew each time thru the loop as the
command is re-read. Note that if the variable formula is enclosed in double quotes, this prevents variable
substitution and thus an error will be generated when the variable formula is evaluated.

Using a v_x, the value of the included variable will not be accessed until the variable formula is evaluated. Thus
the value may change each time the evaluation is performed. This may also be desired behavior.

As an example, if the current simulation box volume is 1000.0, then these lines:

variable x equal vol
variable y equal 2*$x

will associate the equation string "2*1000.0" with variable y.

By contrast, these lines:

variable x equal vol
variable y equal 2*v_x

will associate the equation string "2*v_x" with variable y.

Thus if the variable y were evaluated periodically during a run where the box volume changed, the resulting value
would always be 2000.0 for the first case, but would change dynamically for the second case.

Restrictions:

All universe- and uloop-style variables defined in an input script must have the same number of values.

Related commands:

next, jump, include, print

Default: none

153

SPPARKS WWW Site - SPPARKS Documentation - SPPARKS Commands

volume command

Syntax:

volume V

V = volume of system (liters)•

Examples:

volume 1.0e-10

Description:

This command sets the volume of the system for use in the app_style chemistry application.

For example, it could be the volume of a biological cell within which biochemical reactions are taking place.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry

Default: none

154...1

http://spparks.sandia.gov

	Table of Contents
	
	SPPARKS Documentation
	Version info:
	1. Introduction
	1.1 What is SPPARKS
	1.2 SPPARKS features
	Pre- and post-processing:
	1.4 Open source distribution
	1.4 Acknowledgments and citations

	2. Getting Started
	2.1 What's in the SPPARKS distribution
	2.2 Making SPPARKS
	2.3 Making SPPARKS with optional packages
	2.4 Building SPPARKS as a library
	2.5 Running SPPARKS
	2.6 Command-line options

	3. Commands
	3.1 SPPARKS input script
	3.2 Parsing rules
	3.3 Input script structure
	3.4 Commands listed by category
	3.5 Individual commands

	4. How-to discussions
	4.1 Running multiple simulations from one input script
	4.2 Coupling SPPARKS to other codes

	5. Example problems
	6. Performance & scalability
	7. Additional tools
	8. Modifying & extending SPPARKS
	Application styles
	Diagnostic styles
	Input script commands
	Solve styles

	9. Errors
	9.1 Common problems
	9.2 Reporting bugs
	9.3 Error & warning messages
	Errors:
	Warnings:

	add_reaction command
	add_species command
	app_style chemistry command
	app_style diffusion command
	app_style erbium command
	app_style ising command
	app_style ising/single command
	app_style membrane command
	app_style potts command
	app_style potts/neigh command
	app_style potts/neighonly command
	app_style potts/pin command
	app_style potts/strain command
	app_style relax command
	app_style sos command
	app_style command
	app_style test/group command
	barrier command
	boundary command
	clear command
	count command
	create_box command
	create_sites command
	deposition command
	diag_style array command
	diag_style cluster command
	diag_style diffusion command
	diag_style energy command
	diag_style erbium command
	diag_style propensity command
	diag_style command
	dimension command
	dump command
	dump image command
	dump image command
	dump_modify command
	dump_one command
	echo command
	ecoord command
	event command
	if command
	include command
	inclusion command
	jump command
	label command
	lattice command
	log command
	next command
	pair_coeff command
	pair_style lj command
	pair_style command
	pin command
	print command
	processors command
	read_sites command
	region command
	reset_time command
	run command
	sector command
	seed command
	set command
	shell command
	app_style command
	app_style command
	solve_style command
	app_style command
	stats command
	sweep command
	temperature command
	undump command
	update_only command
	variable command
	volume command

